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For many methods we will see the types of series:
- Alternating stable

- Divergent with constant terms

- Divergent with no constant terms and no pattern

The patterned series will be described in a separate
chapter due to their similarity with all the types of
series previously listed.



1a) General introduction

If you find mistakes, typos or unclear explanations send
an e-mail to:

andrea.thesimplepub@gmail.com

Check the following page before starting reading:
thesimplepub.com/bookerrors

or thesimplepub.wordpress.com/bookerrors

for the 1list of typos and mistakes found after the
publication of the book, and eventual better explanations
of topics not explained well in this book.

My socials links and contact are at the end of the book.
- Andrea Sorato

This book is a translation made by me of my book “SERIE
INFINITE in EURISTICA solidita, coerenza ed eleganza delle
serie infinite in euristica matematica” in italian
language.

I’m not very good in English, and at the moment I cannot
afford a professional translation; thus, there will be a
lot of mistakes, and sometimes the mathematical terms will
be used not correctly.

If you want to have a better explanation of a topic, or
you want to report a mistake feel free to send me a message
(contacts at the end of the book, some here above).



The topic is: infinite series in heuristic and their
solidity, coherence and elegance.

Thus, the book will not describe mathematically the topic:
heuristic maths approaches the problems ignoring on purpose
some of the math rules, using intuition and not rigorous
methods, to get results which seems valid and which will
have to study better in math.

Results might be not right, and the book is a description
of procedures I used, many of them have not been verified
by mathematicians. However, a lot of things I treat as
hypothesis have already been studied by other
mathematicians. I studied this topic mostly as autodidact.

Methods and results I will describe can be linked to more
rigorous maths methods and evaluations which I will not
cover in this book and have already been used to study this
topic by other people.

Recently I had the opportunity to look to some papers about
this topic. I noticed that some results I noticed were in
both my paper and the papers of the mathematicians. This
mean I’ve done a good job, or part of a good job.

In this book we will focus on the heuristic methods, their
results and questions.

Moreover, we will use 1like a model approach: 1like in
physics or in science: a model is created, while it works
it’s ok, if not, it will be adjusted.

Sometimes there will be some auto references.

Often heuristic methods have been criticized and reported
as contradictory: sometimes some supposed incoherence and
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contradiction of heuristic methods have been used as a fact
to show heuristic approaches in infinite series are not
valid.

Nevertheless,

heuristic methods for infinite series and associated
results seem solid, coherent ed elegant.

Although, these methods look like sometimes (and until now)
not very efficient.

The book starts from math and heuristic consideration
already made by other mathematicians and researchers.

In this book graphs are not precise, because they are made
through a simple drawing software, and not a mathematic
software.

Underlined parts of text indicate an interesting topic to
study, still unresolved from me o which I don’t know or
that has not been written in this book for brevity.
Moreover in the 12% chapter there will be a brief
description of some of the unresolved or still open, and
interesting problems.

The book might be not written in a compatible font for
maths expression, which might be not well aligned.

1b) Introduction to series
A series is, simply put, a sum of numbers.
es.: 14+2+43+445+6+7+8+9+10+11+12

Often, for brevity, we can use dots to avoid writing all
numbers:



es.: 1+2+3+4+...+12

We can use variables in the place of numbers too:

a+b+c+d+e+f+g

or only one variable with the index as subscript:
X1+X2+X3+X4+Xs5+Xe+X7+Xg

In a series with a finite quantity of terms, we indicate
often with N, n or sometimes with # the numbers of terms
summed :

example: 1+2+3+4

N=4 or n=4 (or #=4)

Partial sums

A partial sum is the sum of the first n terms, where n is
indicated.

Example:
S: 1+2+43+4

its partial sums are:

Se= 0

s1 =1

S, = 142 = 3
s3 = 1+42+3 = 6

Sa = 142+3+4 = 10 = s



The last partial sum coincides with the total sum s.

(Generally, se is not considered as a null sum, but as
the sum of only the first term. In this book we will use
the convention of se: null sum, due to its incredible
usefulness).
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Line graph of the partial sums of the series 1+2+3+4 (the
polygonal chain starts from the origin, which means from
the height 0: initial partial sum = 0).

Histogram of the partial sums of the series 1+2+3+4
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In the histogram graph of the partial sums the first
column must be always empty as it represents the first
partial sum which is the null sum (Initial partial sum =
9).

Later we will see how the histogram graph is better than
the line graph.

Infinite series

An infinite series is a series with an infinite quantity
of terms.

For example, the series which sums every natural number,
except 0, is an infinite series:

example: 14243+4+. ..
143+7+9+. ..
1-1+1-1+...

14+42+42+2+. ..

1c) Types of infinite series and their
characteristics
Convergent series

An infinite series can have a result: the series
converges.

example: 1/2 + 1/4 + 1/8 + 1/16 + ... =1
It’s demonstrated that the sum of all the values above

(infinite quantity) gives 1. (Later the demonstration).
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Alternating series

An alternating series is a series where the signs of the
terms alternate progressively between positive and
negative (or vice versa).

examples:
1-1+1-1+...
-1+1-1+41-...
1-243-4+...
1-447-12+3-2+...
1-2+41-2+41-2+...

(For extension we will indicate as alternating series
also the series with some 0 terms followed by an
alternating series:

example: 0+0+1-1+1-1+...)

An alternating series can converge.

Alternating indeterminate series
Some series do not have a finite result:
example: 1-1+1-1+41-1+... is indeterminate.

The result is indeterminate because the partial sums
oscillates between 1 and @ (we cannot determine which is
the final result).

Not all the alternating series are indeterminate, for
example the series 1-1/2+1/3-1/4+1/5-... it’s
demonstrated that this series converges to 1n2.

13



Divergent series

A divergent series is a series where the sequence of the

partial sums diverges. Simply put, “its sum value is
infinity”.

example: 1+1+1+1+...

1+4+2+3-8+...
1+2+43+44+... diverge
(142+3+4+... = +o, this way of writing is not rigorous:

we have to use instead the limit of the partial sums).

Divergent series with constant terms
Divergent series where all terms are equal
example.:  +1+1+1+1+...

+24+24+242+. ..

-2-2-2-2-...

+FX+EX+HX+X+. ..

Divergent series with non-constant terms, not patterned

Divergent series where the terms are not all equal and
they do not follow a pattern.

es.. 1+2+3+4+5+...

1+0+5+60+2+. ..
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Often the methods for the divergent series with non-
constant terms can be applied to divergent series with
constant terms, because the latter can be considered as a
case of the former (like a square can be considered a
rectangle with all side of the same length)

Patterned divergent series

A patterned divergent series is a divergent series where
the terms follow a patterned, which means the same
sequence of terms repeats itself periodically.

Example: 14241424142+... (pattern: 1, 2)
4+2+1+4+2+1+... (pattern: 4, 2, 1)
1-2+1-2+41-2+... (pattern: 1, -2)

A divergent series with constant terms is a patterned
divergent series too: its pattern it’s made by only one
term.

example: 2424242+... (pattern: 2)

Thus, the properties of patterned series are valid for
the constant-terms divergent series too; but not vice
versa.

Non-constant terms series are not patterned series.

Stable series

When a straight line which passes through a line graph or
crosses the steps of the histogram graph of a series is
15



parallel to the x axis, then the series represented by
the graph is stable.

The method to find the line which crosses the steps of
the histogram of a series is described in the 11t"
chapter.

We will indicate as “stability line” this line, but
sometimes we will extend its meaning to lines which are
not parallel to the x axis.

Therefore, the term “stable” in this book is used in a
similar meaning (in this case: larger) than the math
official meaning.

Line graph of di 1-1+1-1+...

The straight line which passes through the graph (blue
line) is parallel to the x axis.

The series 1-1+1-1+... 1is stable.

The stability line appears also in the relative histogram
graph:

S




The method to find the blue straight line is described in
the 11t chapter.

Line and histogram graphs of the series 1-2+3-4+...

17



The stability lines in blue colour are parallel to the x
axis.

A rigorous system to verify the stability will be
described in the 11" chapter.

A stable series can be gathered with the parenthesis in
this way:

1-243-4+... 2> 1-(2-3+4-5+...)

More info in the add problem and in the 11% chapter
(model).

Geometric series

A geometric series is a series where the ratio of two
consecutive terms is constant:

X1+Xo+X3+Xa+. . . ratio = Xj.1/xj=k constant

Example of geometric series:

2+4+8+16+. .. k=2
1/2+1/4+1/8+1/16+... k=1/2
3+9+27+81+... k=3

Exception terms

Sometimes in a series of a type, might be that 1 or more
terms do not follow the main characteristic of the
series:

example: 1+1+0+1+1+1+...

This is not a constant terms divergent series, but it’s a
non-constant terms divergent series.
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example: 0+0+1-1+1-1+...

This is still a alternating stable series, but it’s
better to precise the presence of 2 exceptional initial
zeros.

How to indicate a series and its result

We will indicate often a series with a letter, for
example:

a: 1/2+1/4+1/8+1/16+. ..

in this case a indicates the series 1/2+1/4+1/8+1/16+...
and with a letter its result

example: 1/2+1/4+1/8+1/16+...=s

s=1

s indicates the result of the series (or in general the
associated value).

Sometimes, for simplicity, we will use the same letter to
indicate the series and its result (or we will use the
lowercase and the uppercase letter, or vice versa)

example: A: 1/2+1/4+1/8+...=a
or

a: 1/2+1/4+1/8+1/16+...=A.

In an infinite series it’s not important the number of
written terms before the dots, this is important just for
the clarity and the understanding for the reader.
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Example:

1+243+4445+... is the same thing as 1+2+3+...
Obviously writing 1+... would be very ambiguous because
it can mean 1+2+3+4+... or 1+1+1+1+... etc.

1d) Sum of series

Different infinite series can be summed.

They can be summed horizontally or vertically:
Horizontal:

Example:

1+2+3+4+. . . +1+1+1+1+. ..

There are many ways of summing more series horizontally
and this method is very easy to misunderstand.

Vertically:
Example:
a: 1+243+4+. .. +

b: 1+1+1+1+. .. =

Cc: 2+3+4+5+. ..

where c = a+b

The vertical method (in columns) is safe, while the
horizontal method can lead to errors or different
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interpretations and so it’s generally to avoid, or it’s
better to precise also the vertical method.

More info in the 5% chapter: “the add problem”.

Empty spaces

If in a sum of more series, a series has empty spaces in
the place of the initial terms, these empty places mean
the presence of terms of value 0.

a: 1-141-1+... +

b: 24242+, .. =

c: 1+1+3+1+... (c=a+b)
means:

a: 1-1+1-1+... +

b: O+2+2+2+. .. =

c: 1+1+3+1+. .. (c=a+b)

Leaving empty spaces in the place of zeros is a choice to
avoid because it’s not clear and can cause oversights
(especially in the situation of the add problem, see 5t
chapter. In fact, approximately: the © in infinite series
generally is not a neutral element)
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le) Heuristically associated values

With heuristic methods we can often get finite results
for the indeterminate and divergent infinite series too.

The following is an example, we will se the explanation
later:

1+2+3+4+45+...=-1/12

The infinity value generated from the sum 1+2+3+4+... can
be associated to the finite value -1/12, or even better:
the series 1+42+3+4+... can be associated to the value
-1/12.

In the next chapter we will see more info about these
series.

In the divergent series heuristically treated like
1+243+44+4...=-1/12 the = is mathematically non right.

In this case the =, from a certain point of view, is used
with the meaning of association, and not of equivalence.

In the end there will be a dedicated chapter to some
ideas about the model for the description of these
results and of the meaning of the = (chapter 11d).

Usually heuristic methods can also be applied to
convergent series and the results are right (equal to
results obtained by standard methods).

1f) Parenthesis

This topic is delicate. We will use parenthesis to
indicate the order of grouping and resolution, for
example:
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(1+2+3+4+...)+2 > -1/12 + 2

(Where -1/12 is the associated value to 1+2+3+4+...)

1+(1+1+1+1+...) > 1 -1/2

(where -1/2 is the associated value to the series
1+1+1+1+...)

For more info see the chapter 11b (Associative property
and gathering)

1g) Famous series

Following, some famous series with their relative
associated value.

For some series we will see also the formula of the
partial sums, important for further calculation (see 10"
chapter: associated functions).

These have been already studied a lot by different
intellectuals.

We will study these series almost always with heuristic
methods.

These heuristic results and methods for these famous
series will be considered, in this book as true and as
starting points.

1/2+1/4+1/8+1/16+...=1
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There are heuristic and non-heuristic methods to solve
this series.

Graphic intuition

The graph of the partial sums gets closer progressively

to the height y=1: in every step a term is added (1/2,
1/4, 1/8, etc.).

Non heuristic

The partial sums of the series are:
Se= 0

s1=1/2

s, = 1/2+1/4 = 3/4

ss= 1/2+1/4+1/8 = 7/8

sS4 = 1/2+1/4+1/8+1/16 = 15/16

The partial sums follow the following formula:

T 1
7w =l

}:":
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Where t is the index of the partial sum.

With t tending to infinity, the value of the partial sum

tends to 1 (we use the limit).

Heuristic

1/2 + 1/4 + 1/8 + 1/16 +... = s
1/2 (1+ 1/2 + 1/4 + ...) = s
1/2 (1 +s) = s

s=1

X+X234+xMH. .. = x/(1-x)

In maths this series is presented with the condition:

0<x<1

The previous example can be described with this formula
too. In fact: we can see that x=1/2, x?=1/4, x°=1/8, etc..

Hence the formula works:

Partial sums

The formula for the partial sums is:

T at-l-i

= 1—a

where t is the index of the partial

sum.
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With a=1/2 and t tending to +infinity, y is 1

Heuristic
X+X24X34x% ... s
X(1+X+X%+x3+...)=s
x(1+s)=s

X+XS=S

X=S-XS

s=x/(1-x)

We can heuristically extend this formula (and similar
ones) for all numbers

for example:

2+4+8+16+...=-2
2+4+8+16+...=5
2(142+4+48+...)=s
2(1+s)=s

2+2s=s

5=-2

we can notice that: x/(1-x) with x=2 becomes:
2/(1-2) = -2
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1+x4+x%4+x3+. .. = 1/(1-x)

Partial sums

The formula for the partial sums is the formula of

X+x2+x3+... plus 1:

i at+1 ;e at+1

Y 1—a 1—a

where t is the index of the partial sum and a is the term

of the geometric series

Heuristic
1+X+X%4+x3+. . .=5s

1+X (1+X+X%4X3+. .. )=s
1+xs=s

1=s-xs

1=s(1-x)

s=1/(1-x)

(This series is 1 + the series x+x*+x3+...

of the associated values is:
1+x/(1-x) = 1/(1-x) )

Example:

hence the sum
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Falls in the previous case:
1+2+4+48+16+...=S
1+2(142+4+48+...)=s

1+2s=s

s=-1

we can notice that with x=2 s=1/(1-2)=-1

Heuristic
X-X2+X3-x%...=5
X(1-X+Xx2-Xx3+...)=s
x(1-s)=s

X-XS=S

X=S+XS

x=s (1+x)

s=x/(1+x)

2-4+48-16+...=s
2(1-2+4-8+...)=s

2(1-s)=s
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2-2s=s
2=3s

s=2/3

we can notice that x/(1+x) with x=2 is:

2/(1+2)=2/3

1-x+Xx2-x3+...=s
1-x(1-x+x2-...)=s
1-xs=s

s+xs=1

s=1/(1+x)

(This series can be see as 1 minus the series
X-X24+x3+...=x/(1+x) so:

1 - x/(1+x) = 1/(1+x) )

Example:

1-2+4-8+...=s
1-2(1-2+4-8+...)=s
1-2s=s
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s=1/3

so 1/(1+x) with x=2 becomes 1/(1+2)=1/3

1-1+1-1+...=1/2

This series in maths is alternating and does not
converge.

It’s called Grandi’s Series and it’s one of the most
famous series in the heuristic landscape.

Studying heuristically the partial sums
The partial sums of this series are:
1, o0, 1, o,

Thus, the final result is an average of the two possible
partial sums:

s = (1+0)/2 = 1/2

Graphic intuition

1/2
o /

The line graph shows the partial sums: the initial point
is the origin, since before the first +1 the partial sum

30



is @; then the +1 makes the partial sum 1, and then the
-1 makes it @, and so on.

Actually, a line graph is not very appropriate, since the
transition from a partial sum to another partial sum is
gradual (but actually a sum is instantaneous).

To avoid this problem, we need to use a histogram
(although the line graph is often quicker and easier to
use and analyse).

The blue straight line which cross the graph (y=1/2) is
parallel to the x axis, hence the series is stable.

The word “stable” in this book is not used with the same
meaning of the maths one, although it’s similar.

Later we will try to define it.

(The methods to analyse graphs and to verify the
stability of a series and to extract the value of a
series from its graph, see chapter 11)

The first column is empty, since the initial state
(before the first +1) is @ (the histogram shows the
partial sums).

Numerical
1-1+1-1+...=s

1-(1-141-...)=s
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s=1/2

Relation with x-x2+x3-x%+...

The series 1-1+1-1+... can be described also with the
formula x-x2+x3-x*+...=x/(1+x) : with x=1 it becomes
1/(1+1)=1/2

Physical intuition - mental experiment

Let’s imagine a lamp which turns on and off fast: the
evolution is described by the series 1-1+1-1+...:

on every step (every time interval):

+1: the lamp turns on (luminosity increases of 100%)
thus: partial sum = 1: light on

-1: the lamp turns off (luminosity decreases of 100%)
thus: partial sum = @: light off

The lamp turns on and off in this way forever.

Let’s suppose that there is a video recording of the
lamp.

The video has an infinite length, but let’s suppose that
is possible to view it and manage it.

A person is interested in discovering what is the “final”
state of the lamp.
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The person decides to accelerate the video too see what
is the final state.

The person progressively accelerates more the video, and
therefore see the lamp is flickering: the states light on
and light off starts to become indistinguishable.

In the end the video is accelerated by the factor
infinite (video reproduction velocity x «).

The frames are very fast and indistinguishable and they
mix themselves, the luminosity of the lamp appears a
middle way between light on (luminosity=1) and light off
(luminosity=0): luminosity = 1/2

If a light blink fast, we perceive an intermediate
luminosity.

The person come to 2 conclusions:

1) The lamp has a final state of an intermediate
luminosity (luminosity = ©0.5)

2) The lamp had, from a non-temporal point of view, a
luminosity of 0.5.

This story is similar to the famous puzzle the “Thomson’s
lamp”.

1-2+3-4+5-6+...=1/4

This series is in maths an alternating and not convergent
series and it’s one of the most famous series in the
heuristic landscape.
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Partial sums
The partial sums are:
Se = O s1=1 S,=-1 S3=2 S4=-2

Graphic intuition

The blue straight-line y=1/4 “summarize” the graph. It
intersects the y axis in the ordinate 1/4.

The green markers show the middle points of every red
segment, the blue line is the centre line of the zone
delimitated by the green markers.

We can notice that the series is stable, as a matter of
fact, the line y=1/4 is parallel to the x axis.

(The term stable is used in this book in a different
meaning than the standard math meaning)
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Histogram graph:

In

the histogram:

The green polygonal chain has as vertexes the
midpoints of the horizontal sides of the columns of
the graph.

The light blue makers indicate the midpoints of the
segments of the green polygonal chain.

The 1light blue polygonal chain connects the light
blue markers

The blue markers indicate the midpoints of the
segments of the light blue polygonal chain
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The blue straight line is parallel to the x axis, thus
the series represented by the graph is stable (in the
meaning used in this book).

In the 11t chapter there will be a partial explanation of
the method to extract the value of a series from its
graph (like in the example just saw).

Let’s continue the explanation for the series:
1-2+3-4+...=1/4

First numerical explanation

1-2+3-445-6+... = s +
0+1-2+3-4+5-... = s (due to stability) =
1-1+41-1+... = 2s

But 1-1+1-1+...=1/2 (see previous pages)
Thus 1/2=2s , hence:

1-2+3-4+...=1/4

Second numerical explanation
1-2+3-4+...=5
1-(2-3+4-5+...)=s

1-(1-243-4+... +
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+1-1+1-1+...)=s
1-(s+1/2)=s
1-s-1/2=s
1/2=2s

s=1/4

1+14+141+...=-1/2

This series in maths is divergent, and it’s one of the
most famous in the heuristic landscape.

Partial sums
Partial sums are:
So=0 s1=1 S, =2 s3=3 Sy =4
And they follow the formula:
y=Xx

where x is the index of the partial sum.

Graphic intuition

In this case line graphs are not efficient, as we can
see:



In this case the line graph of the partial sums of
1+41+1+... intersects the y axis in 0.

Instead, the histogram graph brings to the value -1/2:
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The straight line (which is the “summarizing line” which
is the associated function (see 9t and 10t chapters))
cuts the steps and passes through the middle points of
the horizontal sides of each column, and intersects the y
axis in the -1/2 ordinate which corresponds to the result
we will find with a numerical procedure too.

Numerical motivation

The “demonstration” is similar to the one of Ramanujan
(which we will see later):

a: +1+1+1+1+... = s +
b: +0-240-2+... = -2s =
c: +1-1+41-1+... = -s

But 1-1+1-1+... 1/2 hence -s=1/2 therefore s=-1/2 so

1+1+1+41+...=-1/2

Relation with the series x+x2+x3+...

The series 1+1+1+1+... can be seen as the series x+x%+x3+...
with x = 1, but the formula for the associated value does
not work: with x=1 the condition of the domain of the
function x/(1-x) are not satisfied (x/(1-1))

So the series x+x*+x3+...=x/(1-x) with x=1 is not defined.

If we calculate the 1limit for 1* and 1- we can notice that:
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x

lim = —00
x—=1t1 — x

: x

lim = 4o
x=1-1—x

For x=1 we can “force” the presence of the value
-1/2: following a qualitative graph of x/(1-x) with the
value -1/2 in x=1:

1

L1 A2
-1

|
|

In violet the vertical asymptote (x=1) and horizontal one
(y=-1).

The situation seems to me asymmetric.

Further explanations of the reason why the formula
X+X2+x3+...=x/(1-x) has a break of its behaviour in x=1
might bring a better comprehension of the infinite
series.
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14+243+445+... = -1/12
Partial sums

The partial sums are:

SO=O
51=1
52=1+2=3

s3=1+2+3=6
Ss=14+2+4+3+4=10

The sum follows the function:

_x&+dj_xz+x
S g

Heuristic associated value

There are different possible procedures, following the
most famous one. The procedure is attributed mainly to
the mathematician Ramanujan.

1+2+43+4+45+...=s
s-4s=-3s

(1+2+3+4+...)-4(14243+4+...)=-3s

1+2+43+4+...-4-8-12-16-...=-3s
+1+2+4+3+4+454+6+... = s
-4-8-12-16-... = -4s
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dilating the second series of 2:

0-4+0-8+0-124+0-16+...=-4s

Summing the two series in columns:

+1+4+2+3+4+54+6+... = S +

+0-440-8+0-12+...=-4s =

1-2+3-445-6+...=-3s

But 1-2+43-4+...=1/4 as we already saw before, hence:
1/4=-3s

s=-1/12

1+243+4445+...=-1/12

Graphic intuition

In the following graph, the curve passes through all
steps (see chapters 10 and 9 for more info about the
analysis and value extraction in graphs) and intersects
the y axis in -1/12.
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The graph is not very precise. It’s been done with a
simple drawing software, and it’s only qualitative.

At the moment it’s not clear to me the method to use to
generate the blue curve in all similar cases (the method
used for 1+1+1+... and for 1-2+3-4+... doesn’t work),
however in this particular case I found that the curve
follows the function:

y=x%/2 - 1/12

You can find a better graph on Wikipedia:
(https://en.wikipedia.org/wiki/1 %2B 2 %2B 3 %2B 4 %2B %E2%8B%AF)
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Partial sums

SO=O
Sl=1
Sz=1+4‘=5

s;=1+4+9=14
sa=1+4+9+16=230

The partial sums follow the function:

n? n?
=gy
f=a

o =

The calculation is similar to the one for the series
1+2+43+4+... and 1+1+1+1+...:

1+449+16+...=s

s-8s=-7s

1+4+49+16+25+... = s

-8(1+4+9+16+25+...)= -8s

1+4+4+9+16+25+36+... = s

-8-32-72-... = -8s

Dilating the second series by 2 and summing the two
series in vertical:

+1+4+9+16+25+36+... = S
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+0-8+0-32+0 -72-... -8s

+1-449-16+25-36+... = -7s

This last series (1-4+9-16+...) gives the value @ (see
chapter 2b).

Therefore -7s=0 2> s=0 > 1+4+9+16+...=0

The series 1+4+9+416+... is the Riemann Zeta of 2, 1like
the series 1+2+3+4+... is the Riemann Zeta of 1, and the
series 1+1+1+1+... is the Riemann Zeta of ©. See chapter

8 for further explanations about Riemann Zeta.

Value extraction techniques

The partial grouping factorization can be used in some
cases as for example in the geometric series:

e.g.: 1+2+4+8+16+...

S

142(142+4+...) S

But not in those non-geometric and non-stable (further
information in the add problem: chapter 5)

e.g.: 1+2424242+... = S

1+2(1+1+1+...) NO!

The comparison to other series is possible, but only in
columns (vertical approach) or if in line, based on the
vertical one:
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1/2 +

e.g.: 1-1+1-1+...
1-243-4+... = 1/4 =

2-344-5+... = 1-1+1-1+... +1-24+3-4+...

Other series

Based on the series described above, we can, by applying
simple maths rules, find other series and their
associated very important values:

for example, 3-3+3-3+...=3/2

for example, 3+43+43+...=-3/2

and generally if Xi+Xp+Xs+...=r then n(Xi+Xz+Xsz+...)=nr

1h) Associated functions and generatrix
series

Function of terms and of partial sums

For a series it can be found a function of the terms and
a function of the partial sums.
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The function of the terms indicates the behaviour of the

terms, the function of the partial sums indicates the
terms of the partial sums.

Example:
For the series 1+2+3+4+5+...

the function of the terms is f(x)=x (with x natural

number except ), the terms follow indeed this function.

The function of the partial sums is g(x)=x(x+1)/2 (with x
natural number except ©0), the partial sums follow indeed

this function.

Generatrix series

The series which generates as partial sums a sequence of

numbers, is called the generatrix series of that
sequence.

Example:

0, 1, 0, 1, 0, 1, o,

(The first term: @, is the null sum)
has as generatrix series:

1-1+1-1+1-1+...

Or:
e, 1, -1, 2, -2, 3, -3,

has as generatrix series:
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1-2+3-4+5-6+...

Other associated functions

We can associate a function to a series where the
function will intersect y axis in the ordinate equal to
the value extracted via heuristic methods from the
series.

We will see these functions often showed in the histogram
graphs, as a general behaviour line, “summarizing line”.

The method to find this function is not clear to me, but

we will see a few cases more in depth in the 10th chapter
(Graphs, stability detection and value extraction) and in
the 9th chapter (Associated functions).

Connection between values and functions

In this book we will start focusing on the process:
series > values

then we will see a little of the process:

series = functions - values

In my opinion, if a solidity in the connection between
series and values 1is verified, thus the associated values
gain validity or importance, and the heuristic maths
models can become a starting point for an update of
maths.
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2) sliding
2a) Sliding
The sliding is the insertion of ©s in front of a series.
Following a series, its slid by 1, and its slid by 2.
a: 1+243+4+5+. ..
a’: O+1+2+43+4+...
a’’: 0+0+1+2+3+...

We indicate sometimes with 1 apostrophe (a’) the series
slid by 1 term, with 2 apostrophes (a’’) the series slid
by 2 terms and so on.

If we indicate with d the number of @s in front of a
series, d is the sliding number, and the series is slid
by d.

e.g.: a’’: 0+0+1+2+3+... d=2

Let’s see now the values of the slid series compared to
the original ones:

ALTERNATING STABLE

Due to stability the result does not change.

A: 1-1+1-1+1-1+... = 1/2
A 0+1-1+1-1-1+... = 1/2
A’ : O0+0+1-1+1-1+... = 1/2

The value of A’ is equal to that of A because A is
stable.
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Line graph and histogram graph of
1-1+1-1+...

12
: /

Line graph and histogram graph of
0+1-1+1-1+...:

Line graph and histogram graph of
0+0+1-1+1-1+...

1
172

The line which cuts the graph intersects in all the three
cases the y axis in the ordinate 1/2 (1-1+41-1+...=1/2,
0+1-1+1-1+...=1/2, 0+0+1-1+1-1+...=1/2) and it’s parallel
to the x axis. The series are thus stable.
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The crossing blue line can be obtained with the procedure
described in the 10th chapter.

A: 1-2+43-4+... = 1/4

A’: @+1-243-4+... = 1/4

-3

K2 04041243 445-6v... = 1/4

In this second example I inserted only the line graph for
simplicity.

For further explanation about the verification of the
stability of a series from the partial sums or from the
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graph and about the extraction of the associated value,
see 10th chapter.

Let A be an alternating stable series, A slid by n (A(M)
has the same value of A.

DIVERGENT CONSTANT TERMS

The problem falls in “the add problem” explained better
later (see 5th chapter)

In general:

If A is a divergent series with constant terms, A slid by
n has NOT the same value of A.

Example:

1+1+1+1+... = -1/2
0+1+1+1+... = -3/2
0+0+1+1+... = -5/2

The value can be calculated via vertical approach (see
5th chapter):

example to get O+1+1+1+...=-3/2:
+1+14+1+1+...=-1/2 +
-14+0+0+0+...=-1 =
O+1+1+1+...= -1/2-1 = -3/2

Notice how the © in infinite series “is not the null
element of the addition”.
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Actually, one can object that the sum in this series,
which are heuristically treated, are not real proper
sums; or that the = has not a real meaning of
equivalence.

Generalisation of the sliding for divergent constant
terms series

In the light of the resolution of the add problem, the
sliding for divergent series with constant terms can be
generalized in this way:

For s: 1+41+1+...=-1/2 slid by n terms:

0+...+0+1+1+1+... (with n initial ©s):

sM: @+...+0+1+1+1+... = -1/2-n

And in general, for s: a+a+a+...=-a/2 slid by di n terms:
0+...+0+a+a+a+... (with n initial ©s):

s(M: @+...+0+a+a+a+... =-a/2-na

DIVERGENT NON-CONSTANT TERMS, NON-PATTERNED
This case falls in “the add problem” too:
In general:

If A is a divergent series with non-constant terms, A
slid by n will not have, usually, the same value.

Example:

1+2+3+4+45+...=-1/12
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Further explanation in the 5th chapter “the add problem”
and 9th chapter “associated functions”

Geometric series do not change value if slid, although
they are divergent with non-constant terms

2(0+4244+48+16+...)=-2%2
0+4+8+16+...=-4

Summing in columns (further explanation in the 5th
chapter):

0+4+8+16+... = -4 +
2404040 +... = 2 =
2+4+8+16+... = -2

4 (0+0+2+4+8+16+...) = -2*4
0+0+8+16+32+... = -8

Summing in columns:

0+0+8+16+32+... = -8
2+44+0+0 40 +... = 6
2+4+48+16+432+... = -2
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X(O+x+x%+x3+...) = x?/(1-x)
O+x24+x3+x*+. .. = x?/(1-x)

Summing in columns:

O+Hx2+x3+x*+. .. = x2/(1-x)
X+0+0+04+0+... = O
XAXHCHx4+ . .. = X2/ (1-x)+x
XAX2H3+x4+ ... = x/(1-x)

The reason why geometric series, even if divergent and
with non-constant terms and non-patterned, do not change
value if slid is still unclear to me and difficult to
understand.

An attempt to explain it will be in the 9th chapter.

Connection with the dilation

Connecting to the dilation, we can notice how
0+14+0+1+0+1+... is the 1-slid of 1+0+1+0+1+0+...

More info in the 6th chapter.

2b) Sliding sum
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The sliding sum is a sum of a series with itself slid by
n positions.

Hence, it’s a special case of the sum of two series,
where the second is the same as the first but with one or
more zeros in front of the first term.

The two series must be summed vertically (which means in
columns).

It has a great utility for the value extraction in the
stable series (since their stability ensures the series
keeps the same value even if slid).

Let A: 1-1+1-1+... = 1/2

and A’: 0+1-1+1-1+...

let’s find A+A’ (let’s use the vertical approach!)

A: 1-1+1-1+... =1/2 +
A 0+1-1+1-... =1/2 =
A+A’ : 1+0+4+0+0+. .. = 2*1/2 =1

Coherent!

By summing a series with its slid we get a coherent
result.

Another example:
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Let A: 1-1+41-1+... = 1/2

and A’’: 0+0+1-1+1-1+...=1/2

A: 1-1+1-1+1-... =1/2 +
A 0+0+1-1+1-... =1/2 =
A+A°°: 1-1+42-242-2+... =1

Let’s verify with another methods if
1-1+2-242-2+...=1

The series 2-2+2-2+... is stable, hence it can be
grouped.

1-1+(2-2+42-2+...)=s
2-242-2+...=1 hence
1-1+1=s

1=s Coherent.

1-2+3-4+45-6+...=1/4

Since 1-2+3-4+... is stable we can find its value by
using a few times sliding sums, that is to say:

1-24+3-4+5-6+...=5 +

0+1-2+43-4+5-...=s (because it’s stable) =

1-1+1-1+1-1+...=2s
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And 1-1+1-1+... falls into the case described above:
1/2=2s

s=1/4

The series is stable and in the line graph the stability
line is parallel to x axis.

In the next page the graph of 1-4+9-16+...
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Line graph of 1-4+49-16+...

The line which cuts the graph is y=0 and is parallel to x
axis, therefore the series is stable.
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We can thus apply the sliding without changing the value
of the series.

1-449-16+...=s +

O+1-449 -...=s =

1-3+45-7+...=2s5=2
By applying again the sliding sum:

1-345-7+...=2s=27

Line graph of 1-3+5-7+... (The line which cuts the graph
is y=0 and is parallel to x axis, hence this series is
also stable)

1-3+45-7+...= 2s = z +
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0+1-345-...= 25 = 2 =

1-242-2+...= 4s = 2z

1-2+42-2+42-...= 4s = 2z (1-2+2-2+... & stabile) +
0+1-242-2+...= 4s = 27 =
1-14+0+0+0+...= 8s = 4z

1-1=0 hence 8s = 0 thus s=0 therefore

1-449-16+25-36+...

I}
()

and also

1-3+45-749-11+...=0

Generally, in order to find the value of a stable series
it is only needed to apply the sliding sum, and applying
it again to the resulting series, until the result will

be finite.

Properties:
stable series + stable series = stable series

Where the sum is made vertically (vertical approach)

A situation where it is wrong to apply the sliding sum.

1-2+41-241-2+...=y
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0+1-2+1-2+1-...= NOT y

The sliding sum is not easy to apply, since 1-2+1-2+...
is not stable hence a sliding will change its value.

2c) Anti-sliding

We call the reverse process of the sliding anti-sliding
or sliding by a negative integer factor.

E.g.:
starting from O0+1+1+1+1+...
the anti-slid by 1, or slid by -1, is:

1+1+1+1+. ..

Connection with the dilation

Connecting to the dilation, we notice that, for example,
the series 0+1+40+1+0+1+... is the (-1)-slid, that is
anti-slid of 1, of the series 1+0+1+0+...

More info in the 6th chapter.

2d) Sliding general formula

We already saw the sliding by a negative integer number
(see previous paragraph).

Moreover, the sliding can be generalized via associated
functions for all real numbers (see 9th chapter)
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Interesting will be understand which are, if they exist,

the numerical representation or in series of the slid
series by a non-integer factor.
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The compression method is a good method to solve some
series.

A compression can be applied by a factor of 1, 2, 3, 4,

It involves partial sums of the series, in different ways
(later explained), as many as the compression factor; the
average of the different resolution is then done: the
average is equal to the associated value to the starting
series.

The partial resolutions of the series use different
grouping and sums of terms.

The compression is visualizable very easily with line
graphs (the representation via histogram graphs is less
understandable)

3a) 2-compression

The 2-compression is useful in many occasions.

The 2-compression can be also called Up-Down Compression
due to its graph (later shown) which shows two lines: one
above and one under the main graph.

The 2-compression identifies 2 ways of partial resolution
of a series, obtaining 2 new series, probably easier,
then we make the average of the 2 series (vertically) or
of the two associated values to the two new series.
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The average of the two, implicates often the elision of
components, which if removed, bring the calculation to a
finite quantity of terms.

It’s still not clear to me the general criterion to
understand if the compression can be applied to a series.

The compression can be applied to series which are:
- stable

- with constant terms

- patterned

Not to the divergent series with non-constant terms and
non-patterned though.

I did not verify if it’s possible to apply the
compression to geometric series.

Following some examples of every case:

ALTERNATING STABLE

The 2-compression can be applied to the alternating
stable series to extract the associated value.

1-243-4+...=1/4

Here are the 2 ways of grouping in pair (2 terms since
it’s 2-compression) the series terms:

U: 1+(-2+3)+(-4+5)+(-6+7)+...
D: (1-2)+(3-4)+(5-6)+...
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then we sum the terms inside the parenthesis:
U: 1+(1)+(1)+(1)+. ..
D: (-1)+(-1)+(-1)+...

then we divide in n parts the terms resulting from the
pair sums, where n is the compression factor (in the U
series, the first term must not be divided since it’s not
coming from inside parenthesis).

U: 1+ (1/2 + 1/2) + (1/2 + 1/2) + (1/2 + 1/2) +...

D: (-1/2 -1/2) + (-1/2 -1/2) + (-1/2 -1/2) +...

Let’s remove the parenthesis and let’s do the average of
the two series (summing in columns and then dividing by
2):

U: +1 +1/2 +1/2 +1/2 +... +
D: -1/2 -1/2 -1/2 -1/2 -... =

1/2 +0 +0 +0
and dividing by 2 we have: 1/4
1-2+3-4+... = 1/4 Coherent

The result is coherent with the other types of
calculation.

Moreover, if the two new series (U and D) are solved with
the add method (we will see it later) we will get:

u=1/4 and d=1/4 whose average gives coherently 1/4.
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+1 +1/2 +1/2 +1/2 +... =1/4 +
-1/2 -1/2 -1/2 -1/2 -... =1/4 =
1/2 +0 +0 +0  +... /2

1/4

Coherent in both members.

Graphic illustration

N

Visualization of the up and down compressed series.

The upper part of the blue line (the first little square
actually coincides with the red line) is the U series (Up
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series: 1+1/2+1/2+1/2+...), while the part under the red
graph is the D series (Down series: -1/2-1/2-1/2-...).

It’s very easy to use the line graph to represent the
compression process.

In general, for alternating stable series, in the 2-
compression process:

d1 -dz + az -az + ..
U is the Up compression, D is the Down compression
S = (U+D)/2 = (u+d)/2

where u and d are the values associated to the series U
and D

The compression almost simulates the process of upper and
lower surrounding of a graph, and this is similar to the
overestimation and underestimation typical of the
algorithm for the calculation of the integrals.

Another example:

1-1+41-1+... = 1/2

U: 1+(-1+1)+(-1+41)+...

D: (1-1)+(1-1)+...

U: 1+(0)+(0)+(0)+...
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D: (0)+(0)+(0)+...

U: 1+0+0+0+0+... =1
D: 0+0+0+0+0+... = 0
Average: 1/2 Coherent!

Graphic illustration:

/N AN
V4 AN

The upper violet line (in the first square coincides with
the red graph) is the line which represent the Up series

(1+0+0+0+...), while the lower violet line represents the
Down series (0+0+0+...)

One more example:

U: 1+(-3+5)+(-7+9)+(-11+...
D: (1-3)+(5-7)+(9-11)+...

U: 1+(2)+(2)+(2)+. ..
D: (-2)+(-2)+(-2)+...

69



U: +1+1+1+1+1+1+1+... -1/2 +

D: -1-1-1-1-1-1-1-... = 1/2 =
U+D: ©
(U+D)/2 = o

1-345-749-11+...=0

DIVERGENT, CONSTANT TERMS

It’s trivial: for 1+1+1+41+... (=-1/2) we notice that:

u: 1+(2)+(2)+. ..

D: (2)+(2)+(2)+...

u: 1+(1+1)+(1+41)+. ..

D: (1+1)+(21+1)+(1+1)+. ..

U: 1+1+1+1+1+... +

D: 1+1+1+1+1+... =

U+D: 2+2+2+2+...

S=(U+D)/2 = 1+1+1+1+...

The resulting series is identical to the starting series,
hence applying the compression irrelevant.
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DIVERGENT, NON-CONSTANT TERMS, NON PATTERNED

At the moment I think the compression can’t be applied to
divergent series with non-constant series and which are
not patterned, with efficient and useful results.

The only exception might be with the geometric series,
but I still did not verify this case.

3b) 3-compression
ALTERNATING STABLE
Example:

1-243-445-6+7-8+9-...=1/4

A: (1-243)+(-4+5-6)+(7-8+9)+...
B: +1+(-2+3-4)+(5-6+7)+(-849-...

C: +1-2+(3-4+5)+(-6+7-8)+9

A: (2)+(-5)+(8)+...
B: +1 +(-3)+(6)+...
C: 1 -2+ (4) + (-7) +...

A: 2/3 +2/3 +2/3 -5/3 -5/3 -5/3 +8/3 +... +
B: 1 -3/3 -3/3 -3/3 +6/3 +6/3 +6/3 +... +
C: 1 -2 +4/3 +4/3 +4/3 -7/3 -7/3 +... =
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The
8/3
1/3
1/3

1/3

(3/
Coh

8/3 -7/3 +3/3 -4/3 +5/3 -6/3 +7/3 +...

series we get is:
-7/3 +3/3 -4/3 +5/3 -6/3 +7/3 -...=
(8-7+3-4+5-6+7-...) =
(7-5+0+0+0+0+0+. . .
1-243-445-6+7-...)=
(2+1/4) = 1/3 (9/4) = 3/4

4)/3 = 1/4

erent!

DIVERGENT, CONSTANT TERMS

1+1+1+1+...=1/2

Tri

vial.

(1+41+1)+(1+21+1) +(1+1+1)+. ..

D1+ (1+1+1)+ (1+141)+ (14141 ) +. . .

1414+ (14+141) +(1+14+2)+ (1+1+1) +. . .

(3)+(3)+(3)+...
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B: 1+(3)+(3)+(3)+...
C: 1+1+(3)+(3)+(3)+...

A: 1+1+1+1+1+...
B: 1+1+1+1+1+...

C: 1+1+1+1+1+...

The average is the starting series, the compression is
irrelevant.

DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED

At the moment I think the compression can’t be applied to
divergent series with non-constant series and which are
not patterned, with efficient and useful results.

The only exception might be with the geometric series,
but I still did not verify this case.

3c) n-compression

In general, a n-compression generates n new series as
intermediate results.

ALTERNATING STABLE
Possibile.

DIVERGENT, CONSTANT TERMS
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Irrelevant.

DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED

Not possible.

The compression by a factor which is not 2 seem to be
very complicated and not very useful.

Extra

The compression seems to connect to the data compression
topic.

For example, in the line graph of 1-2+43-4+...=1/4 the
lines of the Up and Down series can be considered
approximations with low resolution of the red graph: the
resolution is lower and the inlets are not considered:
the two lines approximates upper and lower the graph.

74



Extra

Sometimes the compression can give as one of the
intermediate series a series with the same value of the
starting series. This is a coincidence.

Numerically we need to pay attention and not confuse a
partial resolution of a series via compression with the
original series or with its associated value.

Attention
Example: the series 1-2+3-4+... must not be substituted
with -1-1-1-1-... even if making the sum of the pairs we

get this latter series!
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This process is not allowed in non-convergent series,
even though it might seem intuitive.

This is actually just a partial and approximated version
of the real compression procedure described before.

We need to pay attention since it’s a very ambiguous
choice in some cases.

Associative property applied to an infinity quantity of
terms is not allowed in the infinite series.

More information about the properties of the infinite
series in the 11th chapter.
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The expansion is the “reverse” of the compression.

Example: the expansion which is the reverse of the 2-
compression is the 2-expantion.

If the series:

1-243-445-6+....

can be 2-compressed in two ways:
A: -1/2-1/2-1/2-....

B: 1+1/2+1/2+1/2+1/2

The series -1/2-1/2-1/2-... and the series
1+41/2+1/2+1/2+... can be expanded in 1-2+3-4+5-6+...

-1
[

In red the series: 1-2+3-4+5-...
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In blue, above, the series: +1+1/2+1/2+1/2+...
and in blue, at the bottom, the series:

-1/2-1/2-1/2-1/2-...

A n-compressed series gives as intermediate series n
series, instead a series can be expanded in infinite
ways.

Bidimensional expansion

Interesting is also the bidimensional expansion, which
rewrite a series as a sum of more series (potentially an
infinite quantity) in columns (vertically). We already
saw the cases with a finite quantity, for example:

1+24+34+4+45+. .. >

(1+1+1+21+1+. . .+

0+1+2+3+4+...)

Instead, with an infinite quantity of series there are
problems (see 12th chapter for some examples).

At the moment I don’t know if this last type of expansion
is really a 2-dimensional case of the expansion described
in the beginning of this chapter, or if it’s another

type.
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5a) The problem

The problem starts from a simple question:

1+2+42+242+... is the series 2+2+2+42+... with 1 added, or
it’s the series 2+2+2+... with 1 subtracted to the first
2?

Or it can start from another problem:

1+1+1+41+. . .=2

1+(1+1+1+...)=z2

1+z=z

1=0 ABSURD

Thus, can we group a part of the series 1+1+1+1+...°?

Superficially we can say that because valid operations
are done and the result is absurd, thus the premises are
not right which would mean the whole heuristic approach
to the series is wrong.

Actually, if we keep studying these problems, we will
notice that some rules/conditions have been not
satisfied.

5b) Horizontal and vertical approaches
and resolution

Let’s see more in depth the problem for every type of
series and if eventually it comes up.
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We will see 2 approaches:

e horizontal
e vertical

The horizontal approach is the most intuitive and
coincides with the vertical approach in the standard
maths.

The vertical approach is the right approach in infinite
series (where only sometimes the horizontal one works).

ALTERNATING STABLE
2-1+1-1+1-1+...=3/2
We know that 1-1+1-1+1-1+...=1/2

What is the value of 2-1+1-1+1-1+... ?

Horizontal approach:

2-1+1-1+... = 2-(1-1+1-...) = 2-1/2 = 3/2

Vertical approach:

1-1+1-1+... = 1/2 +
1+040+0+... = 1 =
2-1+1-1+... = 3/2

Vertical = Horizontal
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The horizontal and vertical approaches bring to the same
results in alternating stable series.

Another example:

0-1+1-1+... = ?

VERTICAL:

+1-1+1-1+... = 1/2 +
-14040+40+... = -1 =
0-1+1-1+... = 1/2-1 = -1/2

0-1+1-1+...=-1/2

HORIZONTAL: ©0-1/2 = -1/2

Coherent, hence: 0-1+1-1+...=-1/2

Another example:

We know that: 1-2+3-4+...=1/4

so, -1+2-3+4-...=-1/4

hence -1+1-1+...=-1/2

Which value is associated to -2+3-4+...=?
HORIZONTAL

We analyse the graph (we use the line graph since the
series is stable): the extracted value is 3/4.
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-3/4 :/ \

VERTICAL 1:

A: -142-3+44-...= -1/4 +
B: -1+1-1+1-...= -1/2 =
S: -243-445-...= -1/4-1/2 = -3/4
VERTICAL 2:
A: +1-243-4+45-6+... = 1/4 +
B: -1+0+0+0+0+0+... = -1 =

+0-2+3-445-6+... = 1/4 -1

0-2+3-4+45-6+... = -3/4

The series -2+3-4+45-6+... is stable hence -2+3-4+45-6+...

has the same value of ©-2+3-4+5-6+...
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-2+3-445-6+...=-3/4

Coherent.

DIVERGENT, CONSTANT TERMS

As we already saw, the criticism to infinite series
resolved heuristically starts often from the criticism to
the paradoxical situation caused by the grouping:

1+1+1+...=s
1+(1+41+...)=s
1+s=s

1=0 Absurd

This brings someone to believe the heuristic methods are
not valid for infinite series.

Actually, some conditions and rules have not been
satisfied (the right approach in infinite series is the
vertical one and not the horizontal one).

Let’s study the problem more in depth with an easier
example: we know that

1+1+1+...=-1/2
2+1+1+41+... how much gives?

There are 2 possible approaches:

HORIZONTAL:
2+(1+1+1+...) = 2 -1/2 = 3/2
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VERTICAL:

a: 1+1+1+... -1/2 +

b: 1+0+0+...

Il
=
Il

-1/2 +1 =1/2

2+1+1+1+1+...=1/2

Which of the 2 results is to consider right? 3/2 o 1/2?

The compression method helps us.

If we apply the compression to the series 1-2+3-4+... we
can notice that a new series appears: it’s half of the
one we are studying:

u: 1 +1/2 +1/2 +1/2 +...

X

D: -1/2-1/2 -1/2 -1/2 -...

1/4
We already know that the series 1-2+3-4+...=1/4 thus:
1/4 = (x + 1/4)/2

so, 1/4 is the average of the associated value to the U
series and the associated value to the D series.

Therefore x=1/4 which means 1+1/2+1/2+1/2+...=1/4 thus
2+1+1+1+1+...=1/2

The vertical approach results valid and correct.
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If we always use the horizontal approach, many
contradictions and equivocation will come up, like for
example:

1+1+1+41+... will be equivalent to both
1+(14141+...) = 1-1/2

and 1+1+(1+1+1+...) = 2-1/2

etc.

The horizontal approach is not consistent in case of
divergent series with constant terms. Later we will see
that the horizontal approach is inconsistent in other
cases too.

Therefore, the vertical approach is right, and the
horizontal approach is generally not valid.

Above a histogram graph which visualizes the series
2+1+1+41+...: the blue line intersects the y axis in 1/2
as a matter of fact 2+1+1+1+...=1/2
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Similarly, BHIRIRIRLIISIS3/2:

a: +1+1+1+1+1+...=-1/2 +
b: -1+0+0+0+0+...=-1 =
Cc: +0+1+1+1+1+...=-3/2 (where c=a+b)

In the graph, the straight line which cuts the steps,
intersects the y axis in -3/2. This is another proof of
the validity of the result.

(With the horizontal approach ©+1+1+1+... would have
resulted -1/2 again).

We notice that the case 0+1+1+1+... coincides with the
case of sliding of the divergent series with constant
terms.
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Formula for the addition (add problem) in the divergent
series with constant terms

In general:
n+a+a+a+... = -a/2 + (n-a)

with n in whichever position

another example:

+0+0+1+1+1+... = -5/2
+1+1+1+1+1+... =-1/2 +
-1-1+04+04+0+... =-2 =
+0+0+1+1+1+... =-5/2

Generalizing sliding for divergent series with constant
terms

In the light of the resolution of the add problem, the
sliding for divergent series with constant terms can be
generalized in this way:

Let s: 1+1+1+...=-1/2 . It slid of n terms is:

O+...+0+1+1+1+... (with n initial ©s):

sM: O+,..+0+1+1+1+... = -1/2-n

And in general, with s: a+a+a+...=r=-a/2 , slid of n
terms is:

0+...+0+a+a+a+... (with n initial @s):
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s(M: @+...+0+a+a+a+...=r-na =-a/2-na

Another example (non-consecutive exceptions terms)

+0+1+0+1+1+... = -5/2
+1+1+1+1+1+. .. =-1/2 +
-1+0-14+0+0+... =-2 =
+0+1+0+1+1+... =-5/2
+0+1-2+1+1+... = -9/2
+1+1+1+1+1+... =-1/2 +
-1+0-3+0+0+... =-4 =
+0+1-2+1+1+... =-9/2

DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED
Knowing that 1+2+3+4+...=-1/12

The problem can be solved via vertical approach like in
the previous cases.

A: 142+3+4+45+...=-1/12 +

B: 1+41+1+1+1+...=-1/2 =

C: 243+4454+6+...= -1/12-1/2 = -7/12
with C=A+B
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With the horizontal approach we would have said that
243+4+... = -1/12-1, but this approach is inconsistent in
many other occasions, as a matter of fact, it often gives
contradictory results.

Another example:

0+1+2+3+4+...=5/12

A: +1+2+3+4+5+. . .=-1/12 +

B: -1-1-1-1-1-...=1/2 =

C: 0+1+2+3+4+...=-1/12+1/2=5/12
with C=A+B

It’s very counterintuitive the fact that adding a 0 at
the start of a divergent series the result changes.

If we think the = sign or the sum in these heuristic
situations have not the standard meaning, thus the
problem does not arise, at least not much.

Visualization of the 5/12

If we study the function of the partial sums and the
summarizing line of the graph of the partial sums, we
notice that the latter is a parabola with the vertex on
the y axis

For x<0@ the curve is decrescent.
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In x=0 the blue curve has ordinate of approximately 0.5,
value near 5/12, which we got previously numerically.

The graph without the first column is the identical to
the graph of 1+2+3+4+... (see chapter 1, paragraph:
‘famous series’)

The illustration is not precise because it has been done
with a simple drawing software and not with a maths
software.
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Moreover, it’s not clear to me the procedure to find the
curve, Like in the case of the graph of 1+2+3+4+..., the
curve 1is qualitative.

We can get a representation of the value 5/12 thanks to
the graph of the function 0+1+2+3+4+...

Moreover 0+1+2+3+445+...=5/12 shows consistence and
coherence when used in operations with other series.

The infinite series heuristically treated are the
reflection of the function of the partial sums of the
series.

As a matter of fact, the function of the partial sums of
the series 1+2+3+4+... is a parabola: y=x?/2+x/2

More information about the associated functions in the
8th chapter.

0+0+1+2+3+4+5+...=23/12

The procedure is similar to the previous ones.

+14+2434+445+6+...=-1/12 +
-1-2-2-2-2-2-....= 2 =
0+0+1+2+3+4+...=-1/12+2=23/12
Note that -1-2-2-2-... is:

-(14242+2+...) and 1+2+2+2+... gives the value: -2/2-1 =
-2

Therefore -1-2-2-2-... = 2
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Therefore 0+0+1+2+3+4+...=23/12

The visualization of the result in the graph + parabola
is similar to the one of ©+1+2+3+4+.... (Warning: in the
graph shown above, the curve does not intersect the point
23/12, but it’s close to it, since the graph is not
precise, I’m sorry for the approximation).

At the moment a general formula for the add problem s not
available for the divergent series with non-constant
terms.

The sliding of geometric series is interesting to study.
For example, how much does ©0+2+4+8+16+... give?
2+4+48+16+...=-2 and 0+2+4+48+16+...=-2 too.

Sliding a geometric series does not change its value

We saw this in the 2nd chapter: sliding

Example:

+2+4+8+16+32+... = -2 +
-2-2-4-8 -16+... = © =
0+2+4+8 +16+... = -2

5c) More important examples
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0+2+3+4+5+...=-13/12

+1+2+3+4+5+...=-1/12 +
-1+0+0+0+4+0+...=-1 =
0+2+3+4+5+...=-13/12
143+5+749+... = 1/3

a: +14243+445+... = -1/12 +
b: -1-1-1-1-1-... = 1/2 =

C: +0+1+4243444+... =

a: +1+2+3+4+5+... =

C: +0+1+2+43+4+... =

5/12 (c=a+b)

-1/12 +

5/12 =

d: +143454+749+... =

The formula for the

as a matter of fact:
Se=0

s1=1

S,=1+3=4

S3=1+3+5=9

s4=1+3+5+7=16

4/12 = 1/3 (d=a+c)

partial sums of 1+3+5+7+...

y=x?

is:
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+1+2+3+4+5+...=-1/12
-2-2-2-2-2-...=1
-1+0+1+2+3+...=-1/12+1=11/12
+1+2+3+4+4+45+...=-1/12
-3-3-3-3-3-,..=3/2

-2-140+1+42+...=17/12
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The dilation is not the reverse operation of the
compression, even though it seems to be it.

A dilation is for a n integer positive factor (n-
dilation).

The 2-dilation is very important.

6a) 2-dilation
The 2-dilation is the dilation for the factor 2.

There are 2 main types of 2-dilation: ©x and x@, and one
more type: flat/symmetric dilation.

Ox Dilation

a+b+c+d+... 2> 0+a+0+b+0+c+0+d+. ..

N

X0 Dilation

a+b+c+d+... 2> a+0+b+0+c+0+d+0+. ..

_

flat/symmetric Dilation

a+b+c+d+... = a/2+a/2+b/2+b/2+...
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In the names (©x, x0) x indicates a term from the
original series.

ALTERNATING STABLE

Ox dilating an alternating stable series does not change
its value.

Example:
1-1+1-1+... =1/2

Graphic intuition

DIVERGENT, CONSTANT TERMS
We know that 1+1+1+... = -1/2

0+1+0+1+0+1+... = ?
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-1/2 4

(Note: we have to remember that there is always a null
first step (first empty column in the histogram above)
like in the graph of 1+1+1+...)

If we squeeze the graph horizontally for a factor 2, we
get the same graph of 1+1+1+...=-1/2. So, if we have 2
identical graphs, they must have the same properties,
like that of the summarizing line, thus: the graph of
0+1+0+1+... has the same summarizing line of 1+1+1+...
which intersects the y axis in -1/2.

1+1+1+...=-1/2 and 9+1+0+1+0+1+...=-1/2

We can also find the result via compression (see more
details in the dedicated chapter)

X: (7] +1 +0 +1 +...
U: 0 +1/2 +1/2 +1/2 +...
D: 1/2 +1/2 +1/2 +1/2 +...

U+D: 1/2 +1 +1 +1 + ...
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(U+D)/2: 1/4 +1/2 +1/2 +... = -1/4 -1/4 = -1/2

Coherent.

In general:

A divergent series with constant terms, Ox dilated has
the same value of the original series.

0+a+9+a+0+a+...=-a/2

Now the “demonstration” of 1+1+1+...=-1/2 which starts
from:

1+1+1+1+...=S

2424242+, ..=25
-2-2-2-2-...=-2s
0-2+0-2+0-2+...=-25
hence

1+1+1+41+...=5

0-2+0-2+...=-2s (is always -2s)

1-1+1-1+...=-5
s=-1/2
Has more sense.

We notice that the series 0+1+0+1+0+1+... is the series
1+0+1+0+... slid of 1.

Similarly, the series ©@+a+0+a+... is a+0+a+0+... 1-slid.
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DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED
We know that 1+2+3+4+...=-1/12

0+1+0+2+0+3+... = ?

If we squeeze the graph horizontally of a factor 2 we get
the graph of 1+2+3+4+...

Therefore, it’s absurd if the same graph has 2 different
summarizing line, therefore also 0+1+0+2+0+3+...=-1/12

A divergent series with non-constant terms, ©x dilated,
has the same value of the original series.

The demonstration of Ramanujan, for -1/12, makes sense
now.

It starts from:
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1+2+4+3+4+5+6+... = s
-4-8-12-16-... = 4s
-4s = 0-4+0-8+0-16+...

The ©x dilation does not change the value of a series,

1+2+3+4+45+6+... = s +
0-4+0-8+0-16+...=-4s (is -4s here too) =
1-2+3-4+45-6+... =-3s

1/4 = -3s

s=-1/12

Coherent.

We also notice that the series 0+1+0+2+0+3+... is the
series 14+0+2+0+3+0+... slid of 1.

And in general, a series @+x1+0+xy+... is the series
X1+0+X2+0+. .. slid of 1.

ALTERNATING STABLE

An alternating stable series does not change value if x©
dilated.

Example:

1-1+1-1+...=1/2
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Graphic intuition

the intersection is always in the ordinate 1/2.

DIVERGENT, CONSTANT TERMS
Let’s analyse the case for:
1+0+1+0+1+0+. ..

At first glance, seems that it’s equivalent to
0+1+0+1+...=-1/2, but it’s not.

Let’s look at the graph:

The blue line intersects the y axis in @.
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As a matter of fact, via compression:

X: 1 +0 +1 +0 +...
U: 1 +1/2 +1/2 +1/2 +... +
D: 1/2 +1/2 +1/2 +1/2 +... =

D+U: 3/2 +1 +1 +1 +...

(D+U)/2: 3/4 +1/2 +1/2 +1/2 +... = -1/4+1/4 = ©

Moreover, the result can be obtained also from:

A: 1+1+1+141414. . .=-1/2 +
B: 0+1+0+1+0+1+...=-1/2 =
C: 1+0+1+0+1+0+...=0

Where C=A-B

Thus 1+0+1+0+1+0+...=0 and

In general: a+0+a+0+a+0+...=0

So, even the disposition affects the result or associated
value (0+1+0+1+... has not the same value of 1+0+1+0+...
even though they have the same summed terms; see
commutative property in the 11th chapter: model)

We notice that the series 0+1+0+1+0+1+... 1is the series
1+0+1+0+140+... slid of 1.
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+1+0+1+0+1+0+...=0

-1+1-1+1-1+41-...=-1/2

0+1+0+1+0+1+...=-1/2

DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED

1+0+2+0+3+0+4+0+...=1/24

Graphically it’s not easy to mentally realize this
result, but it’s easy to calculate.

Numerical explanation
1+0+2+4+0+3+0+4+0+. . .=s

2+0+4+0+6+0+8+0+...=25s

+1+3+45+7+49+... = 1/3 +
+2+24242+42+... = -1 =
+3+5+7+9+11+...= 1/3 - 1 = -2/3
3+5+7+9+11+...=-2/3
0+340+5+0+7+...=-2/3 (Ox dilation)

0-34+0-5+0-7+...=2/3

2+0+4+0+6+0+8+0+...=2s +
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0-340-5+0-7+...=2/3 =

2-3+4-546-7+...=2s+2/3

-2+3-445-6+7-8+...=-25-2/3

Due to stability of -2+3-4+5-6+...

1+(-243-4+...) = (-2s-2/3)+1

1/4 = -2s-2/3+1
1/4 +2/3-1 = -2s
-1/12 = -2s

s= 1/24

So

1+0+2+0+3+0+4+0+ ...

1+0+3+0+5+0+7+0+

This series must not be confused with the series

1+345+7+...

The value of this series is very easy to calculate:

= 1/24

..=1/12

14+42+3+445+...=-1/12

2+4+6+8+12+... = -1/6
0+24+0+4+0+6+... = -1/6 (Ox dilation)
0-2+0-4+0-6+... = 1/6

hence
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a: 1+2+3+4+45+6+...=-1/12 +

b: 0-2+0-4+0-6+... 1/6 =

c: 1+0+3+0+5+0+. .. -1/12 + 1/6 = 1/12

where c=a+b

Therefore 1+0+3+0+5+0+... = 1/12

At the moment there isn’t any quick method to identify a
value of a series Ox dilated starting from a divergent

series with non-constant terms, not patterned, and using
heuristic direct manipulations of the series, instead is
very easy to use the associated functions, see chapter 9.

We notice that the series 1+0+2+0+3+0+... 1is the series
0+1+0+2+0+3+... slid of -1; and in general a series
X1+0+Xo+0+X3+0+. .. 1S O+X1+0+X+0+X3+0+... slid of -1.

ALTERNATING STABLE
Example:

1-1+41-1+... dilated symmetrically becomes: 1/2+1/2-1/2-
1/2+...

The series can be calculated as the sum of the relative
Ox and x0 dilated divided by 2.
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0 +1/2 +0 -1/2 +0 +1/2 +0 -1/2 +...=1/4 +
1/2 +0-1/2 +0 +1/2 +0 -1/2 +@ +...=1/4 =

1/241/2-1/2-1/2+1/2+1/2-1/2-1/2+...=1/2

The value is equal to the value of the starting series
in general:

Let A be a stable series: Xi+Xa+Xs+Xs+... = s (the
dilatated @x and x@ have the same value)

1/2 (0+X140+X+0+X34+0+Xs+...) = 1/2*s +
1/2 (X140+X240+X3+0+X440+...) = 1/2*s =
1 (X1+X1+ X2+ X2+ X3+ X+ Xa+. . . ) = 1S

X1+X1+ X2+ X+ X3+ Xa+Xat+ . . . =S

DIVERGENT, CONSTANT TERMS

a+a+a+... > a/2 +a/2 +a/2 +a/2 +...

The series has half value of the value of the starting
series

DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED

It’s not known a simple method to detect the value
(indeed, the series depends on the x@ dilation of a
divergent series with non-constant terms)

6b) 3-dilation
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A series can be dilated of a factor 2, as well as an
integer positive n factor like for example 3.

The 3-dilation is a dilation for a factor 3, hence there
will be 3 main types of 3-dilated series: x00, 0x0, 00x
(where x represents a term from the original series),
moreover we can find the flat-dilated.

Example:

atb+c+d+... >

00Xx) 0+0+a+0+0+b+0+0+C+. ..
0x0) 0+a+0+0+b+0+0+C+0+. ..
00X) 0+0+a+0+0+b+0+0+cC+. ..

flat) a/3+a/3+a/3+b/3+b/3+b/3+c/3+c/3+c/3+...

ALTERNATING STABLE

Like in the 2-dilation ©x, a 3-dilation @0x in an
alternating stable series does not change the value of
the series.

1-141-1+... = 1/2 >

> 0+0+1+0+0-1+0+0+1+0+0-1+...=1/2

Graphic illustration
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The blue line intersects the y axis in 1/2 like the
series 1-1+1-1+...=1/2

DIVERGENT, CONSTANT TERMS

Similarly, to the explanation of the 2-dilation ©x, the
graph of a series 00x dilated, horizontally squeezed for

a factor 2, becomes the graph of a+a+a+... thus both the
series must have the same value or an absurd comes up.

The 3-dilation 00x does not change the value of a series
with constant terms

Later we will see a general formula for the n-dilation of
the type 0...x

Graphic illustration

The blue line intersects in -1/2 the y axis.
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The 3-compression can be applied to the series
0+0+1+0+0+1+... to find its value with success.

DIVERGENT, NON CONSTANT TERMS, NOT PATTERNED

Similarly, to the explanation for the 2-dilation ©x, the
graph of a 00x dilated series horizontally squeezed for a
factor 3, becomes the graph of a+b+c+... therefore both
the series must have the same value or an absurd comes

up.

The 3-dilation 00x does not change the value of a
divergent series with non-constant terms.

ALTERNATING STABLE

The value is not changed. Similar motivations to those
reported in the 2-dilation for stable series.

DIVERGENT, CONSTANT TERMS
Example:

1+1+1+1+... > 0+1+0+0+1+0+0+1+0+...=-1/6

Graphic illustration
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1 |

This graph is not very accurate, but we can geometrically
calculate that the blue straight line intersects the y
axis in -1/6.

in general: B¥at@tOrato+...==a/6

DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED

At the moment, a procedure which uses directly the
manipulation of the series terms to find the value of the
series of this type is not known.

We need to use the associated functions (see chapter 9).

Thanks to the associated functions to the partial sums we
can find further results.

Like for example:

ALTERNATING STABLE

The value is not changed just like in the 2-dilation.

DIVERGENT, CONSTANT TERMS
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1+1+1+... > [HO¥OFITO+0+. 115176

o

If we analyse geometrically the graph, we notice that the
blue straight line intersects the y axis in 1/6.

DIVERGENT, NON-CONSTANT TERMS, NOT PATTERNED

At the moment I don’t know any procedure to directly
manipulate the series in these cases to find the
associated value.

We need to use the associated functions (see chapter 9):

The flat 3-dilation is similar to the flat/symmetric 2-
dilation. The explanation is omitted for brevity.

6¢c) n-dilation and general formula

ALTERNATING STABLE
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Every n-dilation in an alternating stable series does not
change the value of the series

So, a dilation of the type 0x, x0, 00x, 0x0, 000X,
000x00, ... does not change the value of an alternating
stable series.

DIVERGENT, CONSTANT TERMS

Considering as example the 3-dilation and comparing every
result for each case, we notice that the values are in
function of the position p of the term among the ©s.

We can find a general formula for the values of the n-
dilated series with n integer positive factor (1, 2, 3,

4, ...):
Starting from 1+1+1+1+...=-1/2 ,

its d-dilated, where the non-0 term is positioned among
the @s in the position p, gives value:

Examples with d and p:

Dilating the series 1+1+1+...=-1/2
0+0+1+0+0+1+... = -1/2
0+0+1+0+0+1+... (d=3, p=3)
0+0+1+0+0+1+...=-1/2+(3-3)/3 = -1/2
0+1+0+0+1+0+...=-1/6
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0+14+0+0+1+0+... (d=3, p=2)
0+14+0+0+1+0+...=-1/2+(3-2)/3=-1/6

0+14+0+1+0+1+... (d=2, p=2)
0+1+0+1+0+1+ ...=-1/2+(2-2)/2 = -1/2

1+0+0+1+040+... (d=3, p=1)
1+0+0+14+040+... = -1/2+(3-1)/3 = 1/6

0+0+0+1+0+0+0+1+... (d=4, p=4)
0+0+0+1+0+0+0+1+...=-1/2+(4-4)/3 = -1/2

0+1+0+0+0+1+0+0+. .. (d=4, p=2)

0+1+0+0+0+1+0+0+... = -1/2+(4-2)/4=0

1+1+1+1+. .. (d=1, p=1)

1+1+1+...=-1/2+(1-1)/1 =-1/2
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Note:
0+1+0+0+0+1+0+0+...=0

0+0+0+1+0+0+0+1+...=-1/2

0+1+0+1+0+1+0+1+...=-1/2

Coherent in both members.

And:

1+04+0+14040+... = 1/6
0+1+04+0+1+0+... = -1/6
0+0+1+0+0+1+... = -1/2
1I+1+1+14141+. .. = -1/2

Coherent in both members.

And in general, for a series:
a+a+a+a+... =-a/2

The dilated for a factor d, with the term a at the
position p among the @s (p from 1 to d) gives value:

LB Akt pl

EE 9 d

0+4+0+0+4+0+... = -2/3
4+4+4+... dilated with (d=3, p=2):
0+4+0+0+4+0+... = -4/2+4(3-2)/3 = -2/3
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DIVERGENT, NON-CONSTANT TERM, NOT PATTERNED

It’s not available at the moment a general method via

direct manipulation of the series terms to d-dilate a

series of this type (with p position of the term among
the 0s).

We have to use numerical “demonstrations”, which are
usually not easy, or the associated functions (see
chapter 9).

Extra

The dilation of the type 0....x (x last position)
corresponds to the dilation via associated functions,
while the other types (non @...x) are in associated
functions: dilatation + translation (sliding).

Dilation"

The dilation can be applied more times (with “dilation to
the n” we mean applying the dilation n times)

If the series 1+1+1+1+... is x0 dilated and then ©0x
dilated, we get:

1+1+1+1+... 2 1+0+140+... > 0+1+0+0+0+1+0+0+. ..

We get a 0x00 dilated of 1+1+1+...

x0, then x0, we get a x000

ox, then 0x, we get a 000x

115



To find the name of the resulting dilation, we need to
apply the dilation to the name of the dilations applied

to the series.

We can also easily generalize the application of a
dilation n times with the associated functions (see 9th

chapter).

6d) More important examples

Thanks to the dilation formula we can see many of the
previous series in a new perspective:

1-243-445-6+... = 1/4

1+0+43404540+... = 1/12 (already seen)

-2-4-6-8-12-... = -2(1+243+...) =1/6
0-2+0-4+0-6+...=1/6 (same value, since it’s Ox dilated)
1+0+3+0+45+0+... = 1/12 +

0-240-4+0-6+... = 1/6 =

1-243-445-6+... = 1/12+1/6 = 3/12 = 1/4

Coherent.

Or

1-1+1-1+...=1/2
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1+0+1+0+...=0 +
0-14+0-1+... = 1/2 =
1-1+1-1+... = 1/2

Coherent in

both members.

In this last case, we can indicate the sum of the two
series as a “comb sum”, which means that the two series
are complementary: where there are @s in the first
series, in the second there are non-0 terms, and where
there are non-0 terms in the first, there are @s in the

second.

We will indicate with comb sum also a vertical sum of two
series where the second is dilated but the first is not.
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Patterned series are very important:
S: atb+c+...+n+atb+c+...+n+. ..

A patterned series (general description above) is a
series where some terms are periodically summed, and the
terms are arranged in the same order every time.

In the previous description the terms go from a to n (n
generical term)

There are a lot of sub-types of this series, so we will
show different example without a classification.

Remember also that a dilated series from a series
X+X+X+... has value -x/2+x(d-p)/d

1-2+1-2+1-2+...= 1
Pattern: (1, -2)
a: 1+0+1+0+1+0+...=0 +

b: 0-2+0-2+0-2+...=1 =

c: 1-2+41-2+1-2+...=1 (c=a+b)

This series is alternating but not stable, and it’s
divergent, as a matter of fact the stability line is not
parallel to the x axis and it’s decreasing.

Graph:
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In the histogram the blue line intersects the y axis in
the ordinate 1.

Remember that the line graph is not good to extract the
value, and we used the histogram, indeed (more
information in the 1@th chapter)

Thus, we can generalize a patterned series with 2
repeating terms in this way:

a: a+0+a+0+...=0 +
b: 0+b+0+b+...=-b/2 =
C: a+b+a+b+...=-b/2 (c=a+b)
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An important question is: can we apply here the 2-
compression?

2-compression:

1-2+1-2+1-2+...

u: -1/2 -1/2 -1/2 -... +
D: 1 -1/2 -1/2 -... =
(U+D): 1/2 -1 -1 -...

(U+D)/2: 1/4 -1/2 -1/2 -...

1/4 -1/2 -1/2 -... = -(-1/2)/2 + (1/4 -(-1/2)) = 1

Coherent.

Another method for the resolution

Using the ©x dilation:

a: 1+1+1+1+141+... =-1/2 +
b: 0-3+0-340-3+... = 3/2 =
c: 1-2+41-241-2+... =2/2=1
Coherent.
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(0-3+0-3+0-3+... is the oOx dilated of -3-3-3-... , thus
they have the same value which is 3/2)

Thanks to the formula of the dilation is possible to find
the value for more “artistic” series too, like:

1+0+0+1+0+0+1+0+0+... = 1/6 +
0+2+0+0+2+0+0+2+0+... = -1/3 +
0+0+3+0+0+3+0+0+3+... = -3/2 =
1+24341424+3+1+2+3+... = -5/3

a+0+0+a+0+0+a+0+0+...=+a/6 +
0+b+0+0+b+0+0+b+0+...=-b/6 +
0+0+C+0+0+Cc+0+0+C+...=-Cc/2 =
a+b+c+a+b+c+atb+c+...=(a-b-3c)/6

We can also study a generic patterned series like:
X1+Xo+ X3+« o o FXn X1+ X+ X3+, o o+ Xt .

(with pattern: Xxi+xo+Xs+...+Xn)
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Like before, to find the value of this series, we have to
considerate it as a sum of different constant terms
series (each series has its own term: Xi, X2, X3, ..., Xn)
every series is dilated of n (where n is the number of
elements in the pattern) and has the original term in the
position p (where p corresponds to the position of the
term in the pattern: a number from 1 to n):

X1+0 +0 +... 40 +... +
0 +X2 40 +... +0 +... +
0 +0 +Xz3+... +0 +... +

+
0 +0 +0 +... +Xp+... =
X1 +X2 X3 +... +Xn +...

Because each of these series has a value:
-x/2+x(d-p)/d

with d=n, x goes from x; to x, and p goes from 1 to n
(where n is the number of terms in the pattern)

Thus, we just need to use the formula:

X1+X2+X3+ .« o +Xn+ X1+ X2+ X3+ « c+Xnt. . . =S
!
% Xln—i)
s= ) [-2+1——=
2 n

i=1

which can be written as:
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X1+Xo+X3+. . . +Xp+X1+Xo+X3+. . . +Xpt. . . =S

In v [
=
i=1 =1
or
_xnn—-2)+ x5 —4)+x(n—6) + -+ x,(n—2n)
a 2n
or

1 L1
5= sz‘ (n—2i)
=1

Let’s calculate a few series using this formula:

1+1+1+41+... (N=1, pattern: 1)

s=(1/2)*(1)-(1/1)*(1*1)=-1/2 coherent

1-1+1-1+... (N=2, pattern 1-1)
s=(1/2)*(1-1)-(1/2)*(1*1-1*2)

s=0-(1/2)*(-1)=1/2 coherent

1+2+3+1+4+243+... (N=3, pattern: 1+2+3)
s=(1/2)*(1+2+3)-(1/3) (1*1+2*2+3*3)

s=6/2-14/3=(18-28)/6=-10/6=-5/3 coherent.
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The Riemann Zeta is a very famous function. On the
internet you can find a lot of information about it.

It’s connected to the infinite series.

WARNING! We will talk about this function in a non-
rigorous way, and from a mathematical point of view not
always correct (many times it will be heuristic).

We will indicate the Riemann Zeta function with the
letter Z.

The Riemann Zeta is defined as:

1 1
+

=gt i ey

3 4

with t complex number.

Here we will considerate only the cases with t real
number.

Let t=-x , so we can use a simpler function but still
connected to the Zeta di Riemann:

S(X)=1*+2"4+3%+4%+. . .
Where S(x)=Z(-t)

Let’s focus on S(x) now:

S(0) = 1+1+1+1+... = -1/2
S(1) = 1+243+4445+...= -1/12
S(2) = 1+449+16+25+... = 0O
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We already saw these three series in the previous
chapters.

S(-1)= 1+1/2+1/3+1/4+... diverges and hasn’t any
associated value.

Many other values have been found.

Let’s analyse the situation for x>=0

S(@) = 1+1+1+41+... can easily be resolved via “comb sum”
(we already saw it previously):

+1+1+14+1+.. .= ¥y +
-0-2-0-2+...= -2y = (-2-2-2-... ox dil.)
+1-1+1-1+...= -y

But 1-1+1-1+...=1/2 hence:

1+1+1+...=-1/2

To recap: we did y-2y.

Similarly, for 1+42+3+4+...=-1/12

“Demonstration” of Ramanujan (we already saw it
previously)

+1+2+3+4+5+6+... =y +
-0-4-0-8-0-12-...=-4y = (-4-8-12-... ox dil.)

+1-2+3-4+...=-3y
1/4=-3y
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y=-1/12

Thus, we did: y-4y.

1+44+9+16+25+36+...=y +

0-8+0-32+0+-72+...=-8y = (-8-32-72-... dil.)

1-449-16+25-...=-7y
0=-7y
y=0

Thus, we did: y-7y

In general, we can notice that, given a S(x) (where x is
the exponent) the subtraction S(x)-(2%1)S(x) (with
(2¢1)S(x) ©x dilated) brings to the alternating version
of S(x) which we will call T(x).

1+141+1+... =2 y-2y=-y 2> 1-1+1-1+... (x=0 > 2%+1=2)
1+243+4+... 2 y-4y=-3y > 1-2+3-4+... (x=1 => 21*1=4)
1+449+16+... > y-4y=-7y > 1-4+9-16+... (x=2 > 22*1=8)

In general, we notice that to go from the series S(x) to
its alternating (which we call T(x)) we just need to make
the subtraction in columns (vertical) of S(x) and the ox
dilated of (20*V)S(x):

S(x) — S5(x) — 2*+15(x) = T(x)
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where

S(x) = 1% + 2% + 3% 4+ 4% 4+ ...

and

T(x) = 1% — 2% 4 3% — 4% 4 ...

The problem to find the value of S(x) is moved to the
problem of finding the value of T(x).

But how to find the value of T(x)?

The problem has been studied in the section of the
sliding sum where we saw that in the cases of stable
series, we just need to apply some sliding sums until the
result will be finite.

At the moment, I don’t know if the alternating series
relative to the Riemann Zeta series are always stable,
but I suppose they are.

Example:
1-449-16+25-36+. .. +

0+1-4+9 -16+25-... =

1-3+45-7 +9 -11+... +
0+1-3+45 -7 +9 -... =
1-242-2 +2 -2 +... +
0+1-2+2 -2 +2 -... =

1-1+0+0 +0 +0 +... =

0
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The sliding sum has been applied 3 times.

The different sums can be also represented in this way:

1 -4 +9 -16+25 -36 S

0 +1 -4 +9 -16 +25 S

0 +1 -4 +9 -16 +25 S

0 +0 +1 -4 49 -16 S

0 +1 -4 +9 -16 +25 S

0 +0 +1 -4 +9 -16 S

0 +0 +1 -4 +9 -16 S

0 +0 +0 +1 -4 +9 S

1-1+40 40 +0 +0 8s

And we can rewrite the whole thing in the following way:
(depending on how many © there are in the beginning of a
series):

1 -4 49 -16+25 -36 S

0 +1 -4 49 -16 +25 S

0 +1 -4 49 -16 +25 S

0 +1 -4 +9 -16 +25 S

0 +0 +1 -4 +9 -16 s

0 +0 +1 -4 49 -16 S

0 +0 +1 -4 49 -16 S
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O +0 +0 +1 -4 +9 +... = s

1 -1+0 40 +0 +0 +...

We can then merge all with coefficient per each type of
slid series:

1x (1 -4+49 -16 +25 -36 +...

)
3x (0 +1 -4 49 -16 +25 -...)
3x (040 +1 -4 49 -16 +...)

)

1x (040 40 +1 -4 +9 +...

1-1+0 +0 +0 +0 +...

Analysing the similar processes for the series:
1-1+1-1+...

1-2+43-4+...

we can notice that:

the finite sum of all slid alternating series is equal to
(2**1)t, where x is the exponent of the terms 1 2 3 4 ...
in S(x)=1"42*+3*+... and T(x)=1*-2*+3*-4*+,.. and t is the
associated value to T(x).

The number of sliding sums we used is: x+1.

The number of types of slid series to sum is: x+2.
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The coefficients correspond to the binomial coefficient
‘(x+1) choose i’, with i that goes from @ to x+1.

X+1 (x+1)!

i il (x+1-i)!

Moreover, it’s probably enough to sum until the (x+2)th
column to get the result (that’s the reason of the
tabulation in the table of the previous series).

The result then has to be divided by 2*! to get t, which
is the value of the alternating series T(x). Later, we
will have to satisfy the equation: normal - alternating,
which is:

s-2x*1g=t
hence
(1-2*1)s=t

where we will have to insert t to get the value s of the
series S(x).

Let’s rewrite the previous example, in the light of the
new properties:

1+141+... = s 2 1-1+1-1+...=2 (exponent: x=0)
Z=5-25=-5
1x (1 -1 41 -1+1-...)

1x (0+1 -1+41 -1 +...)
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1 +0 +0 +0 +0 +... =1

2%*1t=1 > t=1/2 > s=-1/2

1+243+4+...=5s > 1-2+3-4+...=2 (exponent: x=1)
z=S-4s=-3s
1x (1 -2 +3 -4 45 -... )
2 x (0 +1 -2 +3 -4 +... )
1x (0 +0 +1 -2 43 -... )
140 +0 +0 40 +...

1=2"1t > t=1/4 > s=-1/12

We avoid to write an all-in-one formula since it will be
complicated and not very clear, although it might be full
of interesting properties to study.
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Following a brief explanation of the associated functions
which we also see previously.

Only recently I felt the necessity of write this topic,
but to explain it in depth I should write many more
pages, and the book will become too long and it will be
published too late.

We can associate to each series we previously saw a
function, which is a “summarizing line of the graph of a
series” (we saw this thing in the first chapters of the
book)

These functions allow to easily solve complicated case
and generalize some concepts. In the 11th chapter we will
see some ideas about the “meaning” of all these methods.

I actually don’t know how to completely manage the
associated functions.

Moreover, I don’t know if the following methods always
coincide with the heuristic results we previously saw, in
fact I summarily analysed this new approach, and maybe
the following cases are those which are easier or
advantageous.

Surely there are some studies of other people about
associated series.

For simplicity, the chapter will be divided in paragraphs
each one will be dedicated to one, or more of the same
type, example(s).

9a) 1+1+1+... and a+a+a+...
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In the series 1+1+1+... it’s easy to notice that the line

which cuts the histogram is the straight line:

1 1
Gaetbati s e = =
2 Pk

[o]

»

[4)]

'S

[4N]

N>

-

-1/2

in x=0 y is -1/2.

We can generalize it in the following way:

a

@
L i L i e % r PG
a a a = 2 y=ax 5

We can apply the sliding as a translation of the
function.

For the series @+1+1+1+...=-3/2 (1-sliding) the
associated function is:
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y=g 5 %

3 3
Gtdidslt =g = =

i

//
d .

which in x=0 has y=-3/2 as we also already saw
previously.

We can generalize the sliding in this way:

The associated function to the slid series

0+...4+0+1+1+1+... with n @s at the beginning of the
series is:

1
y=x—-n—c

2
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The translation of the function can be used to calculate
an addition to a series, which is the column/vertical sum

with other terms (already saw it heuristically in the
chapter 5).

Example:
1+1+1+1+1+... = -1/2 +

1+0+0+0+0+... = 1 =

2+1+1+1+1+... = 1/2

The translation must be done vertically thus the formula

is for:
1 1
a+l+i+l+-=—c+@-1) > y=x—5+@-1)
For 2+1+1+1+...:
1
2+1+1+1+"'=E o y=xt5

the histogram graph with the associated function is:

The straight line y=x+1/2 intersects the y axis in 1/2.
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The 2-dilation of a series (example: 1+1+1+... >
0+140+1+...) can also be applied in the associated
function, dilating it of a factor 2.

2-dilation Ox:

0+140+14+0+14+-- =2 y=

-~

Above, the visualization of the straight line y=x/2-1/2
which intersects the y axis in the ordinate -1/2.

If we want to have the function associated to the series
1+0+1+0+... which is the x0 dilated of 1+1+1+... we just
need to translate to left of 1 the function of the 0x
dilatated.

Cn g |
I E0ELED L ek e

which is @ in x=0.

Following the image of the function associated to
1+0+1+0+. ..
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Given a @...x dilated of the series 1+1+1+..., where the
dilation is by a factor d, the associated function is:

i G |
0+0+---+14+04+0+--+1+-- =2 ¥= s
The @...x dilation (x in the last position) in the
heuristic methods, corresponds to a dilation in the

associated function.

Whereas the non-0...x dilation in heuristic methods
corresponds to a translation of the function associated
to the 0...x dilated.

Considering every possible dilation for the series
1+1+1+... the formula becomes;

el

_x
A5 AT

p indicates the position of the term, and d the factor of
dilation.

We can notice that the formula we saw in the 6th chapter:
(y=-1/2+(d-p)/d) is y=x/d+(d-p)/d-1/2 for x=0@, which is
the intersection with the y axis.

And a series a+a+a+a+... dilated of d, with a in position
p, we have the associated function:
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ax a(d—p) a
e e
d d 2

This series has already been shown for x=0 in the 6th
chapter.

Combining all these methods we can get a wide range of
results.

For example, we can combine a 2-dilation with a 1-sliding
and then with another dilation.

9b) 1+2+3+4+...

Which is the function of the curve of the graph of
142+3+4+...=-1/12?
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Remember that the graph is not precise since it’s been
done with a simple drawing software and not a math-
oriented one.

For the series 0+1+2+3+4+...=5/12 we saw a graph similar
to the graph of 1+2+43+4+...:

(The graph is non & precise).

the 5/12, we got previously numerically, can be found in
the blue curve as an interaction of the blue curve with

the y axis.
We already saw the blue curve is a part of a parabola.

Since it’s a parabola, it’s symmetric in relation to the
vertical axis which passes in se¢; therefore, the value
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5/12 is ordinate also of the intersection of the blue
curve with the vertical axis which passes in s;

We have 3 conditions which we will put in system together
with the generic equation of a parabola.

Let’s use as symmetry axis the axis passing through se:

py=ax?+bx+c :
—=a(-1)2+b(-1)+¢

=1
Pl(—l,E)Ep T 2
w0 — Y& - —;=a0" +b0+c e
2(‘ 12:1 P B sy
5 _—=ﬂl +bl+4+c
P, (1—2 Ep 12

1 2 12
E=—E
The function associated to 1+2+3+4+... is
_xz 1
BEXS5 13

If we slide to right of 1 the function, the intersection
of the function with the y axis is 5/12 (it’s p
translated to right of 1):

The function associated to 0+1+2+3+4+... is:
cE=1E 1 5
s FlE el

Similarly, translating the function of 2 to right, the
intersection with the y axis is 23/12, which is the
associated value to the 2-slid series:
0+0+1+2+3+4+...=23/12.
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The function associated to 0+0+1+2+3+4 is:
x-2)2 1 x* 23

= — = — — 2y 4+ —

2 20 2 12

is the function p translated to right of 2.

If we translate the function graph down of 1, we get the
intersection is in -13/12. As a matter of fact, -13/12 is
the value associated to the series:

04+2+3+4+5+... = -13/12
__xz 1
Y=2 712

this is p translated down of 1.

If we translate the function down of 1 and to left of 1,
we get the graph of 2+3+4+5+... which has a intersection
with the y axis the ordinate -7/12:

2+3+445+...=-7/12

indeed, the function p translated is:

_{x+1]2_ 1

—-1
2 12
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We can apply the 2-dilation ©x: we just need to dilate
the associated function for the factor 2:

X2
0+14+04+2104+3+0+44 -2 —(E) L
ST Ty G

Thus, the intersection of the previous function with the
y axis is in -1/12 too.

If we want the function associated to 1+0+2+0+3+0+... we
just need to translate to left the function:

it P s

1+04+24+0+34+0+- 2> ¥y = S5 it by
which with x=0 is:
B O O
¥=ig 5204

It’s “confirmed” that 1+0+2+0+3+4+0+...=1/24
(heuristically speaking)

The function of the series 1+2+3+4+... dilated for a
factor d is:

@ 1 e s

> 17 FdE AP

which for d=3 is

DEDE1I T T U F2ZI0 0 I3 iy = = =

which for x=0 is again -1/12 (indeed
0+0+1+0+0+2+0+0+3+...=-1/12).
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So we can find the associated functions to the dilated
series 0+1+0+0+2+0+0+3+0+... and 1+0+0+2+0+0+3+0+0+. ..
translating the function of 0+0+1+0+0+2+0+0+3+... of 1

and 2 to left:

1 to left:
0+1+0+0+2+0+0+3+0++ =2 il
Y="18 12
with x=0:
1 13 1
Y=18 12~ 36
SO
2 to left:
1+04+0+2404+0+34+04+0+-- =2 Shma) 1
T YT T 12
with x=0:
4 1 5
S TR T T
SO

Combining all these methods we can get a wide range of

results.
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For example, we can combine a 2-dilation with a 1-sliding
and then with another dilation.

9c) 2+4+8+16+... and geometric series

An unresolved guestion, in my opinion, is: why geometric
series do not change value if slid?

We know that:

2+4+8+16+32+...=-2
0+2+4+8+16+... =-2
0+0+2+4+8+16+...=-2

Usually the sliding in divergent series change the
associated value.

The function of the partial sums of a geometric series
is:

a— ﬂH-i

T
with a=2:
.L,=2H-1_2

its qualitative function graph is:
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P

—

There is a horizonal asymptote: y=-2

Therefore, a translation to right of the function, will
move the intersection of the function with the y axis
close to the ordinate -2.

If we think the effective function is similar to this, we
can understand why the series 2+4+8+16+... slid gives
always -2.

More precisely, slid geometric series give always as
value x/(1-x).

Maybe in the associated function the domain is defined
only for x>=0 hence -2 is the lower limit.

Or maybe the function change depending on the sliding and
the situation is weirder than the previous supposition.

9d) 1+3+45+7+9+...

The function of the partial sums is:
y=x which is a parabola
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We know that 1+3+5+7+...=1/3

Calculating ©0+1+43+5+7+...:

+1+345+7+9+... = 1/3 +
-2-2-2-2-2-... =1 +

+1+0+0+04+0+... = 1 =
0+1+3+45+7+... = 7/3

Hence, we follow a similar procedure to the one done for
the previous case: we put in a system the generic
equation of a parabola, and its passage in the point
('117/3)) (611/3)1 (1)7/3):

:y=ax*+bx+c

7
(—L—)Ep a=2
3 b=0
(&—)Ep _ by
3 c_a
1?
! (-E)EP
1
1L E3HS5FET - = y=2x2+§

9e) 1+4+9+16+...

Similarly, we can find the function associated to
1+4+9+16+. ..

The formula of the partial sums is:

i L

==
Y=3735 76

Which is not symmetric in the relation to the y axis.
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We need to put in a system a generic cubic equation, with
the 3 points found from the three sliding applications.

Moreover, it’s not symmetric in relation to the y axis so
we are not facilitated.

9f) Alternating series

About alternating series, see the method described in the
10th chapter.

9g) Recap table

Following a summarizing table of the functions associated
to some of most famous series (including alternating
series)

=

]
= w
: Function Function of Associated L
Series . X Qi
of terms partial sums function o 2

L
1 1
1+1+1+1+-- y=1 y=x y=x—— s
2 2
a a
at+tat+ata+ - y=a v =ax y:ax—z =g
3 3
0+1+1+1+- ¥ ¥ J =% =
1 2 y=x 5 3
x5 a0 1
1+2+3+4+-- e Fem i = e
d =T AR T 12

x> o x? 5

0+1+4+2+3+ )=x =——C =——x+— ey
¥ ¥=% 3 AT 12
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2+4+8+16+ - y=2 P B A ? -2
’ 1 1
1+3+5+7+-- r=2x—1 y =x? y:2x2+§ S
1 1
0+1+0+1+-- *3 *g y:E—— i
2 2 2
5 x 1
1+0+1+0+-- a *y == 0
0+1+0+2+ * « ¥ 1 1
3 4 ) AP _—
FO+3 40+ 4+ Y=7% 12 12
y=
1—14+1—1+-- *s y:l :
y=x
1—-2+3—-4+- *s3 ':E :
=% 2
* ALT

*1 It’s a piecewise function, starts as y=0, then from
x=1 it’s y=1 (potential particular case)

*, It’s a piecewise function, starts as y=0, then from x=1
it’s y=x (potential particular case)

*; It’s a piecewise function (or in points), because the
series 1is alternating, for a more in-depth explanation
see dedicated paragraph.

*ALT. This is a function of the absolute values of the
terms, since they are alternating.
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*, For brevity, we omit the analysis of the function,
which is piecewise but can be reconducted to a continuous
function.

Note: x is a natural number, and we usually start with
the index 1 (index 1: first term) usually it’s convention
to make the first index © to indicate the first term.

At the moment I don’t know a general function associated
to the patterned series. They are very important though.
At the web page “bookerrors” (which link is in the
beginning and at the end of the book) will be written if
available.

The combination of the methods previously described can
give a wide range of methods to solve manty series.
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10a) Line graph vs histogram graph

In the book are shown line graphs and histogram graphs,
both about the partial sums of infinite series.

Remember that the line graph is not a good instrument to
analyse a series, while the histogram is good.

The line graph (with the associated function plotted)
often shows results which are not coherent with numerical
calculation, while the histogram graph (with the
associated function plotted) shows results coherent with
the values numerically found.

Following a summarizing table of some cases:

Line Histogr. | Mumeric.
1-1+41-1+... 1/2 1/2 1/2
1-2+43-4+... 1/4 1/4 1/4
1+1+1+1+. .. B -1/2 -1/2
1+2+43+4+. .. ? -1/12 -1/12
1-241-24... B8 1 1

The line graph is easier to draw and analyse though.

In stable series, the line graph (with the associated
function plotted) brings to the same results of the
histogram (with the relative associate function plotted).

An important problem of the line graph is that the
transition of a partial sum to its consecutive is
progressive, while in fact it’s instantaneous.

Let’s see for example the case of 1+1+1+1+...
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Comparing the line graph with the histogram graph:

. B

In every term sum, a 1 is added, but only in the
histogram the instantaneous sum is showed.

We can also find another interesting type of graph:

0 11 2 3 4 5 6 7 8

This case includes only the points relative to the
natural numbers (partial sums indexes/numeration).

The line graph is a connection of all points of the
points graph (scatter plot).
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10b) Stability detection and value
extraction

We already saw in the previous chapter that the histogram
graph of 1-243-4+45-6+... is:

We can notice that in a histogram graph of a series, we
can check if the series is stable through the following
algorithm:

1) Mark the midpoints of each horizontal side of every
column

(In the previous image, the midpoints are the vertexes of
green polygonal chain)

2) Draw the polygonal chain which connects the midpoints.

(In the previous image, it’s the green polygonal chain)
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3) Mark the midpoints of the (new) segments.
(In the previous image, they are the light blue markers)

4) Go to instruction 2

Continue until the points lay on a straight line.

If the straight line is parallel to the x axis, then the
series is stable;

else it’s not.

The intersection of the straight line (regardless it’s
parallel or not to the x axis) with the y axis gives as
ordinate the value associated to the series.

If no straight line is generated after a number of
iterations, then the algorithm is not appropriate to
extract the value of the series.

Therefore, the algorithm can be used to detect if a
series is stable, but it can extract the value only if a
straight line is generated (hence, it can’t be used in
divergent series with non-constant terms)

At the moment, I don’t know any algorithm for divergent
series with non-constant terms.

Notice how the first green polygonal chain coincides with
the line graph (of the same series) slid to right of 1/2.
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Therefore, the algorithm can be applied to the histogram,
starting from the instruction 1, or to the line graph
slid of 1/2 to right, starting from the instruction 3.

The algorithm can be managed also only through numbers
(considering the coordinates of the points of the graph)
but it will be complicated and long to explain, so the
explanation is omitted for brevity.

Just a hint though: the binomial coefficient appears
indirectly.

It’s possible the formula will be very useful.

Line graphs are much easier for verifying the stability
of a series, but not for extracting its value.

The procedure of value extraction for series where the
algorithm does not work is described in the 9th chapter.
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New properties can be seen in the infinite series.

11a) Commutative property

The commutative property does not change the value of a
non-convergent series only if it’s applied to a non-
infinite quantity of terms.

Example:

+1-141-1+1-1+... = 1/2

Swapping the first term with the second:
-14141-1+41-1+... = -1+41+1/2 (stability)
-1+1+1/2 = 1/2

Coherent.

If we commute all the +1s with the consecutive -1s
(infinite quantity of terms) the series changes value:

-1+1-141-1+41-...=-1/2
Example:

1+2+1+24+142+...=-1

and also 2+1+1+2+1+2+... = -1

if we commute every term of odd positions with the
consecutive term, we get:
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2+1+2+1424+1+... = -1/2

In the convergent series the commutation of an infinite
quantity of terms does not change the associated value.

11b) Associative property and grouping

The associative property can be applied only to
convergent or stable or geometric series, if not the
value of the series will change.

We already studied the problem a little when we faced the
parenthesis problem.

E.g.: (divergent)

1+1+414141+...= -1/2
but
(1+41)+1+1+... 2 2+1+1+1+... = 1/2

It’s possible to apply the associative property in
alternating stable series:

In the light of the consideration that the vertical
approach is right (while the horizontal approach is
generally not valid) for the series sum, we need to
establish a convention for the parenthesis.

If I write: 1+(1+1+1+...) in the parenthesis is the
series 1+1+1+... or it minus 1 (which is @+1+1+1+...)?

Let’s establish the following convention:
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if we write 1+(1+1+1+...) we mean: 1 plus the series
1+41+1+1+... thus the series 1+1+1+... is “complete”, even
if there is another 1 out of the parenthesis.

If we want to highlight the lack of a 1, we must write:
0+1+1+1+... meaning we have to subtract a 1 to the first
term.

Therefore, the grouping in the example:
1+1+1+1+.... = 1+(1+1+1+1+...) NOT CORRECT!

since in the parenthesis we should have write
(0+1+1+1+...), better if in a vertical writing:

1+1+1+1+... = 1+0+0+0+... +
0+1+1+1+... =
1+1+1+1+. .. = 1+1+1+1+...

Grouping in non-stable or non-convergent series, is
allowed only if non-partial (which means only if
something is gathered from all terms and not from part of
them, if the latter, associative property would be
applied)

In stable series associative property and partial
grouping is allowed.

Exception!

Geometric series allow the application of the associative
property and partial grouping
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I suppose geometric series and stable alternating series
are intimately connected, since both of the two types
allow associative properties.

Associative property is connected to the horizontal
approach.

11c) “Futility”

In some cases, part of a series seems to “not have any
effect in the result”:

500+1+500+1+500+1+...=-1/2

The terms 500 do not have any effect:

500+0+500+0+500+0+...=0 +
0+1+ O+1+ O+1+...=-1/2 =
500+1+500+1+500+1+...=-1/2

Remember that the series 500+0+500+0+... has value ©
because it’s a x0 dilated series.

11d) The = problem

The problem of the ‘=’ starts when a series is not
convergent and is associated to a value: putting a
convergent series like 1/2+1/4+1/8+... = 1 is ok, as a
matter of fact, the sequence of the partial sums partial
tends to 1; whereas mathematically it’s not correct to
say that 1-1+1-1+...=1/2 or that
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1+2+3+4+...=-1/12, since these two series do not
converge! their sequence of partial sums do not tend to
those values.

First idea

The value associated to non-convergent series is a
“reflection” of what happens in its associated function
(summarizing line) which intersects the y axis in the
histogram graph of its partial sums and gives as ordinate
that value.

We already saw associated functions in the 9th and 1@th
chapters, and many other times.

In my opinion, however, this does not explain completely
the problem, I mean: why and how this association
happens? Why and how heuristic methods give the same
value of the ordinate of the intersection of the
associated function with the y axis? What’s the meaning
of this?

Is this all caused by the use of an infinite quantity of
terms?

An alternative idea can be useful.

Second idea

As already said by other intellectuals, we can extend the
concept of sum.

In particular, we can notice, in the light of the new
things explained before (grouping, histogram graphs,
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associated functions, etc.), that the terms and their
sums do not have just a quantitative meaning: the
disposition of the terms is fundamental.

About the series 1-1+1-1+... (and the relative lamp
anecdote) we can notice that the terms and relative sums
are temporal.

We also can think that the sum, in the “infinite”
context, loses its non-temporal characteristic, or maybe
the sum it’s just not a “classic” sum.

We can also find a “dimensional-change”: usually a normal
sum acts based on quantity, which can easily be
represented on one line (like the axis). When we add
infinites, the use of the y axis (new dimension) is
necessary to describe the results (as the x axis is
occupied from the partial sums indexes)

This is easily associable to the duo: horizontal approach
(x axis) which is typical of non-infinite calculations,
and vertical approach (y axis) which is typical of many
infinite series.

A “dimensional change” can be seen in the following
situation:

+2424242+... = -1
becomes

+2424242+. .. 1-1

+1+0+0+0+. ..

34242+2+... = 0O
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Moving a term from a finite member to an infinite member
implies a sign change and a dimensional change too (from
horizontal sum to vertical sum).

But it’s true that the horizontal sum does not exclude
the vertical sum.

This is rather an idea than an affirmation, since many
inconsistent or unclear things can be found.

Know that a term a can be saw as the infinite series
a+0+0+0+. . .

Moreover, we can ask ourselves if the z axis can be used
for somethings similar.

I know the previous paragraph is very vague, but the
question is still unclear to me too.

Moreover, we can also notice how the idea of 1-1+1-1+...
which becomes 1/2 can be associated also to non-
temporality (a point of view totally opposite to the
previous one); as a matter of fact we saw in a paragraph
of the 1st chapter (“famous series”) that 1/2 can be

interpreted as the value of 1-1+1-1+... from a reference
system “out of time”. When the value is associated, the
time is not considered, whereas 1-1+1-1+... behave as

temporal since every term is periodically summed.

Detemporalization is “seeing from a non-temporal point of
view” “from out of the time dimension”, looking from
outside in, also, “looking from a upper level” (like an
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airplane see the whole aspect of a territory which would
be impossible or very difficult from someone on the
ground).

Thus, we can introduce a new paragraph: levels.

I know, these paragraphs are quite non-rigorous and
unclear.

1le) Levels

In the light of the new ideas we did, we can think that
in the series 1-1+41-1+... the result 1/2 can be localized
in a “upper level” which now we will indicate as 11. The
terms 1 and -1 are instead in the level 0.

Similarly, for the series 1+1+1+1+...=-1/2:

liv. 1: -1/2

liv. o: 1+1+4141+... = +

In this case the +~ of 1+1+1+... can be “read” as -1/2 in
the upper level, and maybe we can think that the -1/2 is
a reflection of 1+1+1+... and not of 4o which actually

already lost the information about the -1/2.

We can also think many other levels are above 11.

We can think, all these levels are “levels of infinity”
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And we can connect to geometry, in the topic of infinity
(half-line, line, space, space, point, ... they all use
the concept of infinity).

11f) Geometry

The 1+1+1+1+... can be connected to the idea of
concatenation of segments, each one of unitary length.

An infinite quantity of concatenated segments in the same
verse gives a half-line.

segment of length 1

half-1line

We can suppose that the half-line is the main one-
dimensional entity instead of the line, which becomes two
times the half-line (usually line is the main one-
dimensional entity, and the half-line is indeed half of
it).

This is an idea, and not an affirmation.

But we saw that the association of a value to a divergent
infinite series depends also from how the divergence is
reached. For example, both 1+1+1+... and 1+2+3+4+...
diverge, but they have different value, respectively -1/2
e -1/12.

Thus, in the geometric comparison we have to evaluate
also every term.
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We can do it using the cartesian plan and a graph.

8

7

0 1 2 3 4 5 6 7 8 ¢

The x axis indicates the number of terms added, and the y
axis indicates the x-th partial sum.

But we saw that the line graph is not good to extract the
value of a series, whereas the histogram graph is good to
do it.

However, in this chapter we will use the line graph to
make things simple, which can easily be reconducted to
the histogram. The topic however should be further
explained also through histograms.

We also know that 1+1+1+1+...=-1/2
How can we represent this result geometrically?

Thinking about the idea of more levels previously
explained, we can make an association between the half-
line y=x in the quadrant I of the graph with the vector

v=(1 , -1/2)
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that means:

& 0 i 2
, -1/2
2 -1
1
o 1 2 3 4 5 6 7 8 9 -2
at level © at level 1

This idea can be furtherly developed and bring new ideas.

Like for example the fact that maybe is more correct
associate the point graph to the vector v

: ol 1
3 -1/2
G -1
- -
o| 1] 2] 3] 4 5] 6 7] 8 EN -2
at level o at level 1

Maybe we are dealing with a points “condensation”.

But this is not working much with the function which are
not straight lines (like the function of 1+2+3+4+...
which is y=x?/2+x/2)
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Going back to the question line/half-line, which is the
main entity?:

The line would be associated to the double verse series:

S: ... +1 41 +1 +1 +1 +...

More in depth studies about this topic connect to a
different way of thinking how numbers are “organized”:
non-standard analysis is a good idea but even more
interesting concepts can be studied. However, this topic
is omitted for brevity.
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Many times, in this book have been reported, via
underlining, many problems still unclear to me or
unresolved by me, which deserve to be studied better.

I specify the “me”, since maybe they have already been
solved and it’s me who doesn’t know.

Following a list of some of the open problems:

e Break of the behaviour of the formula

- x
x4+ xi x4 xt=

1 —x
in x=1, where it’s not defined, but

1+1+1+1+... = -1/2

And presence of asymmetry:

: x : x

e r o o S
2

while the point is in the ordinate -1/2 (1+1+1+...=

-1/2).

Is there an asymmetry in the “structure” of the
infinities?

e non 0...0x dilation formula for divergent series with
non-constant terms and not patterned, with heuristic
methods of direct manipulation of series (which means
not using associated functions)
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e A method to find the summarizing line/curve in a
series with non-constant terms and not patterned.

e Extension of the formula

Fl n
1 o
suihe
=1 1

I=

for n tending to infinity.
It does not work, why?

For example: the series 1+2+3+4+... can be thought as
a patterned series, with an infinite length pattern of

elements: 1, 2, 3, 4,

Hence the formula becomes:

n mn
o lz 'lz .
= = o)

]
5
-l
——
S
+
=
La
e
A
[y
e
Il
|
2]

which does not give -1/12

The fact that the coincide does not occur is quite
obvious, but further explanation would be interesting.

e Double verse infinite series:
o+l 41 41 +...

e Bidimensional expansion:
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An interesting problem comes when an infinite series
is considered as the vertical sum of more infinite
series.

1+2+43+4+... for example can be:
1 +1 +1 +1 +1 +. = -1/2 -0
0 +1 +1 +1 +1 +. = -1/2 -1
0 +0 +1 +1 +1 +. = -1/2 -2
0 +0 +0 +1 +1 +. = -1/2 -3
0 +. = -1/2 -4

+0 +0 +0 +1

142 43 +4 +5 +...

Why the sums in the two different dimensions are not
equal?:

(-1/2-0)+(-1/2-1)+(-1/2-2)+(-1/2-3)+... =
= -1/2-3/2-5/2-7/2-... =
= -1/2(1+3+5+7+...) = -1/2 * 1/3 = -1/6

while 1+2+3+4+...=-1/12.
The problem must be studied and solved.

A curious case is:

+1 +1 +1 +1 +. = -1/2
+1 +1 +1 +1 +. = -1/2
+1 +1 +1 +1 +. = -1/2
+1 +1 +1 +1 +. = -1/2
1 1 1 1

2 2 2 2

And what is its meaning?
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Series with complex terms:
Example:

1+1i + 1423 + 1431 + 1+41i +... =? -1/2-i/12

Extension of methods for non-natural factors and their
eventual representation in series:

for example:

while the dilation for a factor 2 of 1+1+1+1+...
corresponds to 0+1+0+1+... or 1+0+1+0+..., what would
correspond the series 1.5 dilated?

Similarly, for sliding or other.

Methods of direct manipulation of series to get the
series 0+1+0+0+2+0+0+3+0+... and 1+0+0+2+0+0+3+0+0+...

Maybe the general method to find ‘non @0...x dilated
series of a series with non-constant terms and not
patterned’, uses the patterned series and/or
alternating series, or maybe the bidimensional
expansion.

Three-dimensional or n-dimensional expansions of a
series and its meaning.
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1-1+41-1+... = 1/2
1-2+3-4+... = 1/4
1-449-16+... = ©
1-345-749-11+... = ©
XAX2H3+x4+ ... = x/(1-x)
X=-X2x3-x*+. .. = x/(14x)
1+x+x24x3+... = 1/(1-x)
1-x+x2-x3+... = 1/(1+x)
1+41+1+1+... = -1/2
X+X+X+X+... = -X/2
n+a+a+a+... = -a/2 + (n-a)
a+...+a+tn+a+a+... = -a/2 + (n-a)
14+2+3+4+... = -1/12
2+4+6+8+... = -1/6
1+4+9+16+... = O
0+1+1+1+... = -3/2
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0+0+1+1+1+... = -5/2
2+1+1+1+1+... = 1/2
O+1+2+3+4+... = 5/12
0+9+1+2+3+4+... = 23/12
2+3+445+... = -7/12
0+2+3+4+... = -13/12
0+1+0+1+0+1+... = -1/2
O+X+0+X+0+X+. .. = -X/2
1+0+1+0+140+... = 0O
X+0+X+0+X+0+... = O
0+0+1+0+0+1+... = -1/2
0+1+0+0+1+0+... = -1/6
1+0+0+1+040+... = 1/6

General formula of dilatation of a series a+a+a+...

D(a,d,p) = -a/2 + a(d-p)/d

0+1+0+2+0+3+... = -1/12

O+X1+0+X2+0+X3+. .. = value di Xi+Xa+Xs+...
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1+0+2+0+340+... = 1/24

1+0+0+2+0+0+3+0+0+4+0+0+... = 5/36
0+1+0+0+2+0+0+3+0+0+4+0+... = -1/36
0+9+1+0+0+2+0+0+3+0+0+4+... = -1/12

1+3+45+7+... = 1/3
0+1+3+5+7+... = 7/3
0+1+0+3+0+5+... = 1/3
1+0+3+0+5+0+.. = 1/12
2+4+6+48+... = -1/6
1-2+1-241-2+... =1
a+b+a+b+a+b+... = -b/2
1+1424243+3+... = -1/24
1-1+2-2+3-3+... = 1/8
1+2+3+1+243+... = -5/3
a+b+c+at+b+c+... = (a-b-3c)/6
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a+b+c+...+n+a+b+Cc+...+n+...=

where x; is the i-th term of the pattern, and
N is the number of components of a pattern
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Errata corrige del 6 giugno 2020

Questa errata corrige potrebbe a sua volta contenere errori.

Dove non vengono indicati alcuni aspetti (come ad esempio il formato del testo,
o le evidenziazioni) si intende che essi rimangono invariati.

Le sottolineature indicano che il testo doveva essere riportato sottolineato
(indicazione di problema aperto o irrisolto).

I1 testo in corsivo indica invece una nota, che non deve perd appartenere al

libro: & una nota di chiarimento sulla correzione.
Pag. Versione stampata Versione corretta
Invece, il grafico a istogramma Invece, il grafico a istogramma

31 | interseca a -1/2 porta indirettamente al valore a -
1/2

31 La dimostrazione & simile a quella | La “dimostrazione” & simile a

di Ramanujan quella di Ramanujan
Al momento non mi & chiaro il Al momento non mi e chiaro il
metodo da usare per generare la metodo da usare per generare la

35 | curva blu (il metodo usato per curva blu in tutti i casi simili a

1+1+141+... i per ... questo... (il metodo usato per
1+1+1+1+... e per ...

41 | A’ A

a1 I1 valore di A’ & uguale a A poiché | I1 valore di A’ & uguale al valore

A e stabile di A poiché A & stabile

Non ho verificato se & possibile Non ho verificato se & possibile
applicare la compressione alle applicare la compressione alle
serie geometriche. serie geometriche con successo.

55
La frase doveva dunque essere
sottolineata in quanto delinea un
problema aperto.

U & la up compressione, D & la down | se attuata una 2-compressione, U e

58 | compressione la up compressa, D & la down
compressa

La linea viola superiore (nel primo | La linea viola superiore (nel primo
59 quadretto coincide con il grafico quadretto coincide con il grafico
rosso) & la linea rappresentate la | rosso) & la linea rappresentante la
Up serie ... Up serie ...
. costanti e non a pattern con . costanti e non a pattern con
risultati efficienti e sensati ... risultati efficienti e sensati,

60 anche se & probabile che la 2-
compressione possa essere applicata
con successo alle serie geometriche
divergenti.

costanti e non a pattern con costanti e non a pattern con
risultati efficienti e sensati. risultati efficienti e sensati,

63 anche se & probabile che la 3-
compressione possa essere applicata
con successo alle serie geometriche
divergenti.




Non possibile.

Non possibile.
anche se & probabile che una n-

63 compressione possa essere applicata
con successo alle serie geometriche
divergenti.

70 | Quando da -2+3-4+...=? Quanto da -2+3-4+...=?

77 Quanto da 2+3+4+...=7/12 Possiamo trovare che:
2+3+4+...=-7/12

Se andiamo ad osservare la funzione | Se andiamo ad osservare la funzione
78 | associata alle somme parziali e la | delle somme parziali e la linea ...

linea ...

Una dilatazione & per un fattore n |Una dilatazione & per un fattore n

83 | positivo intero. positivo intero, che indicheremo
con n-dilatazione.

83 La 2 dilatazione e molto La 2-dilatazione & molto

importante. importante.
Notiamo che la serie Notiamo che la serie
0+1+0+1+0+1+... & la serie 0+1+0+1+0+1+... €& la serie
1+0+1+0+... slittata di -1. 1+0+1+0+... slittata di 1.
86
E in modo analogo per le serie E in modo analogo una serie
O+a+0+a+... di a+0+a+0+... O+a+0+a+... e la 1-slittata di
a+0+a+0+. ..
Notiamo che una serie Notiamo che la serie
0+1+0+2+0+3+... & la serie 0+1+0+2+0+3+... e la serie
1+0+240+3+0+... slittata di -1. 1+0+2+0+3+0+. .. slittata di 1.
87
E in generale per una serie E, in generale, una serie
O+X1+0+Xo+. . . di X1+0+X+0+. .. O+X1+0+X2+. .. € la 1-slittata di
X1+0+X2+0+. . .
. a partire da una serie . a partire da una serie
92 divergente a termini non costanti divergente a termini non costanti e
con la manipolazione ... non a pattern, con la
manipolazione...
Essendo la 3-dilatazione, una Essendo la 3-dilatazione una
03 dilatazione per un fattore 3, vi dilatazione per fattore 3, vi
saranno 3 serie intermedie saranno 3 tipi principali di 3-
principali: dilatazione:
0 La linea blu interseca 1l’asse y a La linea blu interseca 1’asse y a
1/2 come la serie 1+1+1+1+...=-1/2 |1/2 come la serie 1-1+1-1+...=1/2
La 3-dilatazione @0x non cambia il | La 3-dilatazione ©0x non cambia il
o5 valore di una serie a termini non valore di una serie divergente a
costanti termini non costanti e non a
pattern
E necessario usufruire delle E necessario usufruire delle
97 | funzioni associate (vedi capitolo funzioni associate (vedi capitolo
10: 9):
La 3-dilatazione & analoga simile La 3-dilatazione & simile alla 2-

98 | alla 2-dilatazione paritaria ... dilatazione paritaria (solo che per
un fattore 3, invece che 2)
AlL’1inizio del capitolo 6¢c da

98 aggiungere:




Per una n-dilatazione esistono n
tipi di n-dilatazioni possibili
principali (come per la 3-
dilatazione erano possibili 3 tipi
principali di 3-dilatazione: 00x,
0x0, x00)

0x0...0

X0....0

Per comodita (senza bisogno di fare
calcoli ogni volta) ricordiamoci
che:

Una n-dilatazione del tipo @...x
non cambia il valore ad una serie.
(ricordiamoci infatti che gia le
dilatazioni ©x, oppure ©0x non
cambiavano i valori di una serie;
in modo analogo per tutte le n-
dilatazioni del tipo @...x).

102

Per trovare il nome della
dilatazione finale, bisogna dunque
applicare le dilatazioni ai termini
di dilatazioni.

Per trovare il nome della
dilatazione finale, bisogna dunque
applicare la seconda dilatazione al
nome della prima dilatazione.

102

-2-4-6-8-12-... = -2(1+2+3+..) =1/6

-2-4-6-8-12-... = -2(1+2+3+...)=1/6

115

4%+... e ti & il valore associato a
T(x)

4+... e t e il valore associato a
T(x)

116

A fine capitolo era da aggiungere:

Per quanto riguarda le funzioni
associate (vedi capitolo 9):
interessante sarebbe trovare
eventuali funzioni associate alle

serie a pattern, che per ora non ho
perd ricercato.

120

1+1+1+141+. .. =
14+0+0+0+0+... = 1

1+1+1+14+1+. .. = -1/2 +
1+04+0+04+0+... = 1 =

2+1+1+1+1+. ..

[}
=
~
N

2+1+1+1+1+. .. = 1/2

La pagina presenta vari paragrafi
appartenenti ad un’'altra sezione.
La pagina 123 é da eliminare tutta,
tranne L’ultimo riquadro, che é
corretto e al posto giusto:

“E per una serie a+a+a+a+...”

129

Una questione aperta é&: perché le
serie geometriche slittate non
cambiano valore?

Una guestione aperta é&: perché le
serie geometriche slittate non
cambiano valore come invece fanno




le serie divergenti non a pattern
ma_non geometriche?

La frase era da riportare
sottolineata in quanto descrive un
problema aperto.

Sulla riga relativa alla serie
1+3+5+7+... la funzione associata

133 A T
ha un’evidenziazione per un errore
di stampa
Sulla riga relativa alla funzione Versione corretta:
0+1+0+2+0+3+0+4+... la funzione
s > 2
133 associata e: , y=x__l
x 1 8 12
8 12
*ALT. La funzione e quella *ALT. La funzione indica
riportata ma in versione alternata | 1’andamento dei valori assoluti dei
ossia se & riportata la funzione. termini (per x=1,2,3,... con x €
134 N—-{0}).
I termini nella serie sono in
realta a segno alterno
(+}-)+J-}"')'
*, Per brevita omettiamo 1’analisi *, Per brevita omettiamo 1’analisi
134 della funzione dei termini, che & a | della funzione, che & a tratti ma
tratti ma riconducibile ad una riconducibile ad una continua...
continua...
Da aggiungere a fine capitolo
Interessante sarebbe studiare
134 : A .
eventuali funzioni associate alle
serie a pattern.
In questo caso si limita la In questo caso si visualizza la
funzione delle somme parziali ai funzione delle somme parziali solo
136 soli numeri naturali, e il grafico | per i numeri naturali (che
a linee... sull’asse x rappresentano gli
indici delle varie somme parziali),
e il grafico a linee...
L’intersezione della retta Da riportare evidenziato in un
138 | (indipendentemente ... riquadro arancione.
. 11 valore associato alla serie.
La proprieta associativa non pud La proprieta associativa non pud
essere ... essere applicata alle serie non
convergenti, né alle serie non
141 Pqs .
stabili, né a quelle non
geometriche; altrimenti il loro
valore cambierebbe.
Aggiungere un punto alla lista dei
problemi aperti:
155

e Studiare e verificare se &
possibile applicare con
successo la compressione alle




serie geometriche (incluse
anche quelle alternate con i
valori assoluti dei termini
in andamento geometrico)

perché le serie geometriche
slittate non cambiano valore
come invece fanno le serie
divergenti non a pattern ma
non geometriche?

Funzioni associate alle serie
a pattern
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